Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Elementary Particles and Fields and String Theory

Old Dominion University

Gluons

Articles 1 - 10 of 10

Full-Text Articles in Physics

Gluon Transverse-Momentum-Dependent Distributions From Large-Momentum Effective Theory, Ruilin Zhu, Yao Ji, Jian-Hui Zhang, Shuai Zhao Jan 2023

Gluon Transverse-Momentum-Dependent Distributions From Large-Momentum Effective Theory, Ruilin Zhu, Yao Ji, Jian-Hui Zhang, Shuai Zhao

Physics Faculty Publications

We demonstrate that gluon transverse-momentum-dependent parton distribution functions (TMDPDFs) can be extracted from lattice calculations of appropriate Euclidean correlations in large-momentum effective theory (LaMET). Based on perturbative calculations of gluon unpolarized and helicity TMDPDFs, we present a matching formula connecting them and their LaMET counterparts, where the latter are renormalized in a scheme facilitating lattice calculations and converted to the MS ¯ scheme. The hard matching kernel is given up to one-loop level. We also show that the perturbative result is independent of the prescription used for the pinch-pole singularity in the relevant correlations. Our results offer a guidance for …


Rapidity-Only Tmd Factorization At One Loop, Ian Balitsky Jan 2023

Rapidity-Only Tmd Factorization At One Loop, Ian Balitsky

Physics Faculty Publications

Typically, a production of a particle with a small transverse momentum in hadron-hadron collisions is described by CSS-based TMD factorization at moderate Bjorken xB ~ 1 and by kT-factorization at small xB. A uniform description valid for all xB is provided by rapidity-only TMD factorization developed in a series of recent papers at the tree level. In this paper the rapidity-only TMD factorization for particle production by gluon fusion is extended to the one-loop level.


Short-Distance Structure Of Unpolarized Gluon Pseudodistributions, Ian Balitsky, Wayne Morris, Anatoly Radyushkin Jan 2022

Short-Distance Structure Of Unpolarized Gluon Pseudodistributions, Ian Balitsky, Wayne Morris, Anatoly Radyushkin

Physics Faculty Publications

We present the results that form the basis for calculations of the unpolarized gluon parton distributions (PDFs) using the pseudo-PDF approach. We give the results for the most complicated box diagram both for gluon bilocal operators with arbitrary indices and for combinations of indices corresponding to three matrix elements that are most convenient to extract the twist-2 invariant amplitude. We also present detailed results for the gluon-quark transition diagram. The additional results for the box diagram and the gluon-quark contribution may be used for extractions of the gluon PDF from different matrix elements, with a possible cross-check of the results …


Toward The Determination Of The Gluon Helicity Distribution In The Nucleon From Lattice Quantum Chromodynamics, Colin Egerer, Bálint Joó, Joseph Karpie, Nikhil Karthik, Tanjib Khan, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos Jan 2022

Toward The Determination Of The Gluon Helicity Distribution In The Nucleon From Lattice Quantum Chromodynamics, Colin Egerer, Bálint Joó, Joseph Karpie, Nikhil Karthik, Tanjib Khan, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos

Physics Faculty Publications

We present the first exploratory lattice quantum chromodynamics (QCD) calculation of the polarized gluon Ioffe-time pseudodistribution in the nucleon. The Ioffe-time pseudodistribution provides a frame-independent and gauge-invariant framework to determine the gluon helicity in the nucleon from first principles. We employ a high-statistics computation using a 323 × 64 lattice ensemble characterized by a 358 MeV pion mass and a 0.094 fm lattice spacing. We establish the pseudodistribution approach as a feasible method to address the proton spin puzzle with successive improvements in statistical and systematic uncertainties anticipated in the future. Within the statistical precision of our data, we …


Drell-Yan Angular Lepton Distributions At Small X From Tmd Factorization, Ian Balitsky Jan 2021

Drell-Yan Angular Lepton Distributions At Small X From Tmd Factorization, Ian Balitsky

Physics Faculty Publications

The Drell-Yan process is studied in the framework of TMD factorization in the Sudakov region s » Q2 » q2 corresponding to recent LHC experiments with Q2 of order of mass of Z-boson and transverse momentum of DY pair ∼ few tens GeV. The DY hadronic tensors are expressed in terms of quark and quark-gluon TMDs with 1Q2 and 1Nc2 accuracy. It is demonstrated that in the leading order in Nc the higher-twist quark-quark-gluon TMDs reduce to leading-twist TMDs due to QCD equation of motion. The resulting hadronic tensors depend on …


Electron-Ion Collider: The Next Qcd Frontier, A. Accardi, J. L. Albacete, M. Anselmino, N. Armesto, E. C. Aschenauer, A. Bacchetta, D. Boer, W. K. Brooks, T. Burton, N.-B. Chang, C. E. Hyde Jan 2016

Electron-Ion Collider: The Next Qcd Frontier, A. Accardi, J. L. Albacete, M. Anselmino, N. Armesto, E. C. Aschenauer, A. Bacchetta, D. Boer, W. K. Brooks, T. Burton, N.-B. Chang, C. E. Hyde

Physics Faculty Publications

This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades …


Next-To-Leading Order Evolution Of Color Dipoles, Ian Balitsky, Giovanni A. Chirilli Jan 2008

Next-To-Leading Order Evolution Of Color Dipoles, Ian Balitsky, Giovanni A. Chirilli

Physics Faculty Publications

The small-x deep inelastic scattering in the saturation region is governed by the nonlinear evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the Balitsky-Kovchegov equation for the evolution of color dipoles. In the next-to-leading order the Balitsky-Kovchegov equation gets contributions from quark and gluon loops as well as from the tree gluon diagrams with quadratic and cubic nonlinearities. We calculate the gluon contribution to the small-x evolution of Wilson lines (the quark part was obtained earlier).


Quark Contribution To The Small-𝔁 Evolution Of Color Dipole, Ian Balitsky Jan 2007

Quark Contribution To The Small-𝔁 Evolution Of Color Dipole, Ian Balitsky

Physics Faculty Publications

The small-𝔁 deep inelastic scattering in the saturation region is governed by the nonlinear evolution of Wilson-lines operators. In the leading logarithmic approximation it is given by the Balitsky-Kovchegov (BK) equation for the evolution of color dipoles. In the next-to-leading order (NLO) the nonlinear equation gets contributions from quark and gluon loops. In this paper I calculate the quark-loop contribution to small-𝔁 evolution of Wilson lines in the NLO. It turns out that there are no new operators at the one-loop level—just as at the tree level, the high-energy scattering can be described in terms of Wilson lines. In addition, …


Complete Angular Distribution Measurements Of Two-Body Deuteron Photodisintegration Between 0.5 And 3 Gev, H. Bagdasaryan, H. Bektasoglu, G. E. Dodge, T. A. Forest, C. E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, F. Sabatié, S. Stepanyan, L. B. Weinstein, J. Yun, Et Al., The Clas Collaboration Jan 2004

Complete Angular Distribution Measurements Of Two-Body Deuteron Photodisintegration Between 0.5 And 3 Gev, H. Bagdasaryan, H. Bektasoglu, G. E. Dodge, T. A. Forest, C. E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, F. Sabatié, S. Stepanyan, L. B. Weinstein, J. Yun, Et Al., The Clas Collaboration

Physics Faculty Publications

Nearly complete angular distributions of the two-body deuteron photodisintegration differential cross section have been measured using the CEBAF Large Acceptance Spectrometer detector and the tagged photon beam at the Thomas Jefferson National Accelerator Facility. The data cover photon energies between 0.5 and 3.0 GeV and center-of-mass proton scattering angles 10°–160°. The data show a persistent forward-backward angle asymmetry over the explored energy range, and are well described by the nonperturbative quark gluon string model.


How Much Of The Nucleon Spin Is Carried By Glue?, Ian Balitsky, Xiangdong Ji Jan 1997

How Much Of The Nucleon Spin Is Carried By Glue?, Ian Balitsky, Xiangdong Ji

Physics Faculty Publications

We estimate in the QCD sum rule approach the amount of the nucleon spin carried by the gluon angular momentum: the sum of the gluon spin and orbital angular momenta. The result indicates that gluons contribute at least one half of the nucleon spin at the scale of 1GeV2.