Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Elementary Particles and Fields and String Theory

Old Dominion University

Form factors

Articles 1 - 14 of 14

Full-Text Articles in Physics

Multidimensional, High Precision Measurements Of Beam Single Spin Asymmetries In Semi-Inclusive 𝜋⁺ Electroproduction Off Protons In The Valence Region, S. Diehl, A. Kim, G. Angelini, K. Joo, S. Adhikari, M. J. Amaryan, M. Arratia, H. Atac, H. Avakian, C. Ayerbe Gayoso, N. A. Baltzell, L. Barion, S. Bastami, M. Battaglieri, I. Bedlinskiy, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, F. Bossù, Et Al. Jan 2022

Multidimensional, High Precision Measurements Of Beam Single Spin Asymmetries In Semi-Inclusive 𝜋⁺ Electroproduction Off Protons In The Valence Region, S. Diehl, A. Kim, G. Angelini, K. Joo, S. Adhikari, M. J. Amaryan, M. Arratia, H. Atac, H. Avakian, C. Ayerbe Gayoso, N. A. Baltzell, L. Barion, S. Bastami, M. Battaglieri, I. Bedlinskiy, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, F. Bossù, Et Al.

Physics Faculty Publications

High precision measurements of the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering (SIDIS) from the proton have been performed using a 10.6 GeV incident electron beam and the CLAS12 spectrometer at Jefferson Lab. We report here a high precision multidimensional study of single π+ SIDIS data over a large kinematic range in Bjorken x, fractional energy, and transverse momentum of the hadron as well as photon virtualities Q2 ranging from 1–7  GeV2. In particular, the structure function ratio FsinϕLU/FUU has been determined, where FsinϕLU is a twist-3 …


Form Factors And Two-Photon Exchange In High-Energy Elastic Electron-Proton Scattering, M. E. Christy, T. Gautam, L. Ou, S.L. Allison, D. Bulumulla, F. Hauenstein, C. Hyde, K. Park, M.N.H. Rashad, J. Zhang, Y. X. Zhao, P. Zhu, Et Al. Jan 2022

Form Factors And Two-Photon Exchange In High-Energy Elastic Electron-Proton Scattering, M. E. Christy, T. Gautam, L. Ou, S.L. Allison, D. Bulumulla, F. Hauenstein, C. Hyde, K. Park, M.N.H. Rashad, J. Zhang, Y. X. Zhao, P. Zhu, Et Al.

Physics Faculty Publications

We present new precision measurements of the elastic electron-proton scattering cross section for momentum transfer (Q2) up to 15.75  (GeV/c)2. Combined with existing data, these provide an improved extraction of the proton magnetic form factor at high Q2 and double the range over which a longitudinal or transverse separation of the cross section can be performed. The difference between our results and polarization data agrees with that observed at lower Q2 and attributed to hard two-photon exchange (TPE) effects, extending to 8 (GeV/c)2 the range of Q2 for which a discrepancy …


Deeply Virtual Compton Scattering Cross Section At High Bjorken 𝓍B, F. Georges, M.N.H. Rashad, A. Stefanko, J. Zhang, Y. Zhao, P. Zhu, Et Al. Jan 2022

Deeply Virtual Compton Scattering Cross Section At High Bjorken 𝓍B, F. Georges, M.N.H. Rashad, A. Stefanko, J. Zhang, Y. Zhao, P. Zhu, Et Al.

Physics Faculty Publications

We report high-precision measurements of the deeply virtual Compton scattering (DVCS) cross section at high values of the Bjorken variable 𝓍B. DVCS is sensitive to the generalized parton distributions of the nucleon, which provide a three-dimensional description of its internal constituents. Using the exact analytic expression of the DVCS cross section for all possible polarization states of the initial and final electron and nucleon, and final state photon, we present the first experimental extraction of all four helicity-conserving Compton form factors (CFFs) of the nucleon as a function of 𝓍B, while systematically including helicity flip amplitudes. …


First Measurement Of Timeline Compton Scattering, P. Chatagnon, S. Niccolai, S. Stepanyan, M. J. Amaryan, C. E. Hyde, S. E. Kuhn, P. Pandey, Jiwan Poudel, Y. Prok, N. Zachariou, J. Zhang, Z. W. Zhao, Et Al., Clas Collaboration Jan 2021

First Measurement Of Timeline Compton Scattering, P. Chatagnon, S. Niccolai, S. Stepanyan, M. J. Amaryan, C. E. Hyde, S. E. Kuhn, P. Pandey, Jiwan Poudel, Y. Prok, N. Zachariou, J. Zhang, Z. W. Zhao, Et Al., Clas Collaboration

Physics Faculty Publications

We present the first measurement of the timelike Compton scattering process, 𝛾p →p′𝛾(𝛾→e+e), obtained with the CLAS12 detector at Jefferson Lab. The photon beam polarization and the decay lepton angular asymmetries are reported in the range of timelike photon virtualities 2.25 < Q2 < 9  GeV2, squared momentum transferred 0.1 < −t < 0.8  GeV2, and average total center-of-mass energy squared s = 14.5  GeV2 . The photon beam polarization asymmetry, similar to the beam-spin asymmetry in deep virtual Compton scattering, is sensitive to the imaginary part of the Compton form factors and provides a …


On-Shell Representations Of Two-Body Transition Amplitudes: Single External Current, Raúl A. Briceño, Andrew W. Jackura, Felipe G. Ortega-Gama, Keegan H. Sherman Jan 2021

On-Shell Representations Of Two-Body Transition Amplitudes: Single External Current, Raúl A. Briceño, Andrew W. Jackura, Felipe G. Ortega-Gama, Keegan H. Sherman

Physics Faculty Publications

This work explores scattering amplitudes that couple two-particle systems via a single external current insertion, 2 + J → 2. Such amplitudes can provide structural information about the excited QCD spectrum. We derive an exact analytic representation for these reactions. From these amplitudes, we show how to rigorously define resonance and bound-state form factors. Furthermore, we explore the consequences of the narrow-width limit of the amplitudes as well as the role of the Ward-Takahashi identity for conserved vector currents. These results hold for any number of two-body channels with no intrinsic spin, and a current with arbitrary Lorentz structure and …


Extraction Of Beam-Spin Asymmetries From The Hard Exclusive Π⁺ Channel Off Protons In A Wide Range Of Kinematics, M.J. Amaryan, D. Bulumulla, M. Hattawy, M. Khachatryan, S.E. Kuhn, Z. W. Zhao, Et Al., The Clas Collaboration Jan 2020

Extraction Of Beam-Spin Asymmetries From The Hard Exclusive Π⁺ Channel Off Protons In A Wide Range Of Kinematics, M.J. Amaryan, D. Bulumulla, M. Hattawy, M. Khachatryan, S.E. Kuhn, Z. W. Zhao, Et Al., The Clas Collaboration

Physics Faculty Publications

We have measured beam-spin asymmetries to extract the sinϕ moment ALUsinϕ from the hard exclusive ep → e'nπ+ reaction above the resonance region, for the first time with nearly full coverage from forward to backward angles in the center of mass. The ALUsinϕ moment has been measured up to 6.6  GeV2 in -t, covering the kinematic regimes of generalized parton distributions (GPD) and baryon-to-meson transition distribution amplitudes (TDA) at the same time. The experimental results in very forward kinematics demonstrate the sensitivity to chiral-odd and chiral-even GPDs. In very backward kinematics where …


Consistency Checks For Two-Body Finite-Volume Matrix Elements: Conserved Currents And Bound States, Raúl A. Briceño, Maxwell T. Hansen, Andrew W. Jackura Dec 2019

Consistency Checks For Two-Body Finite-Volume Matrix Elements: Conserved Currents And Bound States, Raúl A. Briceño, Maxwell T. Hansen, Andrew W. Jackura

Physics Faculty Publications

Recently, a framework has been developed to study form factors of two-hadron states probed by an external current. The method is based on relating finite-volume matrix elements, computed using numerical lattice QCD, to the corresponding infinite-volume observables. As the formalism is complicated, it is important to provide nontrivial checks on the final results and also to explore limiting cases in which more straightforward predictions may be extracted. In this work we provide examples on both fronts. First, we show that, in the case of a conserved vector current, the formalism ensures that the finite-volume matrix element of the conserved charge …


Finite Volume Matrix Elements Of Two-Body States, Alessandro Baroni, Raúl A. Briceño, Maxwell T. Hansen, Filipe G. Ortega-Gama Jan 2019

Finite Volume Matrix Elements Of Two-Body States, Alessandro Baroni, Raúl A. Briceño, Maxwell T. Hansen, Filipe G. Ortega-Gama

Physics Faculty Publications

In this talk, we present a framework for studying structural information of resonances and bound states coupling to two-hadron scattering states. This makes use of a recently proposed finite-volume formalism to determine a class of observables that are experimentally inaccessible but can be accessed via lattice QCD. In particular, we shown that finite-volume two-body matrix elements with one current insertion can be directly related to scattering amplitudes coupling to the external current. For two-hadron systems with resonances or bound states, one can extract the corresponding form factors of these from the energy-dependence of the amplitudes.


Extraction Of The Nuetron Electric Form Factor From Measurements Of Inclusive Double Spin Asymmetries, V. Sulkosky, G. Jin, E. Long, Y.W. Zhang, M. Mihovilovic, A. Kelleher, B. Anderson, D. W. Higinbotham, S. Ŝirca, K. Allada, M. Canan Jan 2017

Extraction Of The Nuetron Electric Form Factor From Measurements Of Inclusive Double Spin Asymmetries, V. Sulkosky, G. Jin, E. Long, Y.W. Zhang, M. Mihovilovic, A. Kelleher, B. Anderson, D. W. Higinbotham, S. Ŝirca, K. Allada, M. Canan

Physics Faculty Publications

Background: Measurements of the neutron charge form factor, GnE , are challenging because the neutron has no net charge. In addition, measurements of the neutron form factors must use nuclear targets which require accurately accounting for nuclear effects. Extracting GnE with different targets and techniques provides an important test of our handling of these effects.

Purpose: The goal of the measurement was to use an inclusive asymmetry measurement technique to extract the neutron charge form factor at a four-momentum transfer of 1(GeV/c)2 . This technique has very different systematic uncertainties than traditional exclusive …


Iterative Monte Carlo Analysis Of Spin-Dependent Parton Distributions, Nobuo Sato, W. Melnitchouk, S. E. Kuhn, J. J. Ethier, A. Accardi, Jefferson Lab Angular Momentum Collaboration Jan 2016

Iterative Monte Carlo Analysis Of Spin-Dependent Parton Distributions, Nobuo Sato, W. Melnitchouk, S. E. Kuhn, J. J. Ethier, A. Accardi, Jefferson Lab Angular Momentum Collaboration

Physics Faculty Publications

We present a comprehensive new global QCD analysis of polarized inclusive deep-inelastic scattering, including the latest high-precision data on longitudinal and transverse polarization asymmetries from Jefferson Lab and elsewhere. The analysis is performed using a new iterative Monte Carlo fitting technique which generates stable fits to polarized parton distribution functions (PDFs) with statistically rigorous uncertainties. Inclusion of the Jefferson Lab data leads to a reduction in the PDF errors for the valence and sea quarks, as well as in the gluon polarization uncertainty at x ≳ 0.1 . The study also provides the first determination of the flavor-separated twist-3 PDFs …


Relativistic, Model-Independent, Multichannel 2 → 2 Transition Amplitudes In A Finite Volume, Raúl A. Briceño, Maxwell T. Hansen Jan 2016

Relativistic, Model-Independent, Multichannel 2 → 2 Transition Amplitudes In A Finite Volume, Raúl A. Briceño, Maxwell T. Hansen

Physics Faculty Publications

We derive formalism for determining 2+𝓙 → 2 infinite-volume transition amplitudes from finite-volume matrix elements. Specifically, we present a relativistic, model-independent relation between finite-volume matrix elements of external currents and the physically observable infinite-volume matrix elements involving two-particle asymptotic states. The result presented holds for states composed of two scalar bosons. These can be identical or nonidentical and, in the latter case, can be either degenerate or nondegenerate. We further accommodate any number of strongly coupled two-scalar channels. This formalism will, for example, allow future lattice QCD calculations of the ρ-meson form factor, in which the unstable nature of …


Towards A Resolution Of The Proton Form Factor Problem: New Electron And Positron Scattering Data, Clas Collaboration, D. Adikaram, L. B. Weinstein, R. P. Bennett, K. P, Adhikari, M. J. Amaryan, S. Careccia, L. El Fassi, C. E. Hyde, A. Klein, S E. Kuhn, M. Mayer, Z. W. Zhao Jan 2015

Towards A Resolution Of The Proton Form Factor Problem: New Electron And Positron Scattering Data, Clas Collaboration, D. Adikaram, L. B. Weinstein, R. P. Bennett, K. P, Adhikari, M. J. Amaryan, S. Careccia, L. El Fassi, C. E. Hyde, A. Klein, S E. Kuhn, M. Mayer, Z. W. Zhao

Physics Faculty Publications

There is a significant discrepancy between the values of the proton electric form factor, GpE, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GpEfrom the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual …


Ep → Ep Π⁰ Reaction Studied In The Δ(1232) Mass Region Using Polarization Asymmetries, M. Bektasoglu, L. Ciciani, K.V. Dharmawardane, G. E. Dodge, T.A. Forest, C.E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, S. Stepanyan, L. B. Weinstein, Et Al., Clas Collaboration Jan 2003

Ep → Ep Π⁰ Reaction Studied In The Δ(1232) Mass Region Using Polarization Asymmetries, M. Bektasoglu, L. Ciciani, K.V. Dharmawardane, G. E. Dodge, T.A. Forest, C.E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, S. Stepanyan, L. B. Weinstein, Et Al., Clas Collaboration

Physics Faculty Publications

Measurements of the angular distributions of target and double-spin asymmetries for the Δ+(1232) in the exclusive channel p(e,e'p)π0 obtained at the Jefferson Lab in the Q2 range from 0.5 to 1.5 GeV2/c2 are presented. Results of the asymmetries are compared with the unitary isobar model [D. Drechsel , Nucl. Phys. A645, 145 (1999)], dynamical models [T. Sato and T. S. Lee, Phys. Rev. C 54, 2660 (1996); S. S. Kamalov , Phys. Lett. B 27, 522 (2001)], and the effective Lagrangian theory [R. M. Davidson , Phys. Rev. …


First Measurement Of The Double Spin Asymmetry In EP → E ‘Π⁺ In The Resonance Region, G. E. Dodge, K. V. Dharmawardane, T. A. Forest, C. E. Hyde-Wright, A. Klein, S. E. Kuhn, R. A. Niyazov, L. B. Weinstein, J. Yun, Et. Al., Clas Collaboration Jan 2002

First Measurement Of The Double Spin Asymmetry In →E→P → E ‘Π⁺ In The Resonance Region, G. E. Dodge, K. V. Dharmawardane, T. A. Forest, C. E. Hyde-Wright, A. Klein, S. E. Kuhn, R. A. Niyazov, L. B. Weinstein, J. Yun, Et. Al., Clas Collaboration

Physics Faculty Publications

The double spin asymmetry in the ep → e' π+n reaction has been measured for the first time in the resonance region for four-momentum transfer Q2 = 0.35-1.5 GeV2. Data were taken at Jefferson Lab with the CLAS detector using a 2.6 GeV polarized electron beam incident on a polarized solid NH3 target. Comparison with predictions of phenomenological models shows strong sensitivity to resonance contributions. Helicity-1/2 transitions are found to be dominant in the second and third resonance regions. The measured asymmetry is consistent with a faster rise with Q2 …