Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Physics

Consistency Checks For Two-Body Finite-Volume Matrix Elements: Conserved Currents And Bound States, Raúl A. Briceño, Maxwell T. Hansen, Andrew W. Jackura Dec 2019

Consistency Checks For Two-Body Finite-Volume Matrix Elements: Conserved Currents And Bound States, Raúl A. Briceño, Maxwell T. Hansen, Andrew W. Jackura

Physics Faculty Publications

Recently, a framework has been developed to study form factors of two-hadron states probed by an external current. The method is based on relating finite-volume matrix elements, computed using numerical lattice QCD, to the corresponding infinite-volume observables. As the formalism is complicated, it is important to provide nontrivial checks on the final results and also to explore limiting cases in which more straightforward predictions may be extracted. In this work we provide examples on both fronts. First, we show that, in the case of a conserved vector current, the formalism ensures that the finite-volume matrix element of the conserved charge …


Pion Valence Structure From Ioffe-Time Parton Pseudodistribution Functions, Bálint Joó, Joseph Karpie, Kostas Orinos, Anatoly V. Radyushkin, David G. Richards, Raza Sabbir Sufian, Savvas Zafeiropoulos Dec 2019

Pion Valence Structure From Ioffe-Time Parton Pseudodistribution Functions, Bálint Joó, Joseph Karpie, Kostas Orinos, Anatoly V. Radyushkin, David G. Richards, Raza Sabbir Sufian, Savvas Zafeiropoulos

Physics Faculty Publications

We present a calculation of the pion valence quark distribution extracted using the formalism of reduced Ioffe-time pseudodistributions or more commonly known as pseudo-PDFs. Our calculation is carried out on two different 2 + 1 flavor QCD ensembles using the isotropic-clover fermion action, with lattice dimensions 243 × 64 and 323 × 96 at the lattice spacing of a = 0.127 fm, and with the quark mass equivalent to a pion mass of mπ ≃ 415 MeV. We incorporate several combinations of smeared-point and smeared-smeared pion source-sink interpolation fields in obtaining the lattice QCD matrix elements using …


Longitudinal Bunch Profile Diagnostic For Magnetized Electron Beams, Mark Stefani, Fay Hannon Nov 2019

Longitudinal Bunch Profile Diagnostic For Magnetized Electron Beams, Mark Stefani, Fay Hannon

Electrical & Computer Engineering Faculty Publications

The study of magnetized electron beam has become a high priority for its use in ion beam cooling as part of electron ion colliders and the potential of easily forming flat beams with a large aspect ratio. In this paper, a new diagnostic is described with the purpose of studying longitudinal and transverse magnetized beam properties. The device is a modification to a typical pepper-pot. Specifically, this 1D pepper-pot was designed for use with a transverse deflecting cavity for longitudinal bunch profile measurements of magnetized beams.


Transverse Uncorrelated Emittance Diagnostic For Magnetized Electron Beams, Fay Hannon, Mark Stefani Oct 2019

Transverse Uncorrelated Emittance Diagnostic For Magnetized Electron Beams, Fay Hannon, Mark Stefani

Electrical & Computer Engineering Faculty Publications

The study of magnetized electron beam has become a high priority for its use in ion beam cooling as part of electron ion colliders and the potential of easily forming flat beams for various applications. In this paper, a purpose-specific diagnostic is described with the intention of studying transverse magnetized beam properties. The device is a modification to the classic pepper-pot, used in this context to measure the uncorrelated components of transverse emittance in addition to the typical effective emittance. The limitations of traditional methods are discussed, and simulated demonstrations of the new technique shown.


Complete Matching For Quasidistribution Functions In Large Momentum Effective Theory, Wei Wang, Jian-Hui Zhang, Shuai Zhao, Ruilin Zhu Oct 2019

Complete Matching For Quasidistribution Functions In Large Momentum Effective Theory, Wei Wang, Jian-Hui Zhang, Shuai Zhao, Ruilin Zhu

Physics Faculty Publications

We complete the procedure of extracting parton distribution functions (PDFs) using large momentum effective theory at leading power accuracy in the hadron momentum. We derive a general factorization formula for the quasi-PDFs in the presence of mixing and give the corresponding hard matching kernel at O(αs), both for the unpolarized and for the polarized quark and gluon quasi-PDFs. Our calculation is performed in a regularization-independent momentum subtraction scheme. The results allow us to match the nonperturbatively renormalized quasi-PDFs to normal PDFs in the presence of mixing and therefore can be used to extract flavor-singlet quark PDFs as well …


Numerical Exploration Of Three Relativistic Particles In A Finite Volume Including Two-Particle Resonances And Bound States, Fernando Romero-López, Stephen R. Sharpe, Tyler D. Blanton, Raúl A. Briceño, Maxwell T. Hansen Oct 2019

Numerical Exploration Of Three Relativistic Particles In A Finite Volume Including Two-Particle Resonances And Bound States, Fernando Romero-López, Stephen R. Sharpe, Tyler D. Blanton, Raúl A. Briceño, Maxwell T. Hansen

Physics Faculty Publications

In this work, we use an extension of the quantization condition, given in ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original form of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand, …


Comparing Proton Momentum Distributions In A = 2 And 3 Nuclei Via 2H 3H And 3He (E,E′P) Measurements, R. Cruz-Torres, F. Hauenstein, A. Schmidt, D. Nguyen, D. Abrams, H. Albataineh, S. Alsalmi, D. Androic, K. Aniol, W. Armstrong, J. Arrington, H. Atac, D. Bulumulla, C. E. Hyde, V. Khachatryan, M. N.H. Rashad, L. B. Weinstein, Z. Y. Ye, J. Zhang, Jefferson Lab Hall A Tritium Collaboration Oct 2019

Comparing Proton Momentum Distributions In A = 2 And 3 Nuclei Via 2H 3H And 3He (E,E′P) Measurements, R. Cruz-Torres, F. Hauenstein, A. Schmidt, D. Nguyen, D. Abrams, H. Albataineh, S. Alsalmi, D. Androic, K. Aniol, W. Armstrong, J. Arrington, H. Atac, D. Bulumulla, C. E. Hyde, V. Khachatryan, M. N.H. Rashad, L. B. Weinstein, Z. Y. Ye, J. Zhang, Jefferson Lab Hall A Tritium Collaboration

Physics Faculty Publications

We report the first measurement of the (e, e' p) reaction cross-section ratios for Helium-3 (3He), Tritium (3H), and Deuterium (d). The measurement covered a missing momentum range of 40 ≤ pmiss ≤ 550 MeV/c, at large momentum transfer ({Q2} ≈ 1.9 (GeV/c)2) and xB > 1, which minimized contributions from non quasi-elastic (QE) reaction mechanisms. The data is compared with planewave impulse approximation (PWIA) calculations using realistic spectral functions and momentum distributions. The measured and PWIA-calculated cross-section ratios for 3He/d and 3H/d extend to just above the typical …


Unitarity Of The Infinite-Volume Three-Particle Scattering Amplitude Arising From A Finite-Volume Formalism, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe, Adam P. Szczepaniak Sep 2019

Unitarity Of The Infinite-Volume Three-Particle Scattering Amplitude Arising From A Finite-Volume Formalism, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe, Adam P. Szczepaniak

Physics Faculty Publications

Hansen and Sharpe [Phys. Rev. D 92, 114509 (2015)] derived a relation between the scattering amplitude of three identical bosons,M3, and a real function referred to as the divergence-free K matrix and denoted Kdf;3. The result arose in the context of a relation between finite-volume energies and Kdf;3, derived to all orders in the perturbative expansion of a generic low-energy effective field theory. In this work we set aside the role of the finite volume and focus on the infinite-volume relation between Kdf;3 and M3. We show that, for any …


Factorization Of Jet Cross Sections In Heavy-Ion Collisions, Jian-Wei Qiu, Felix Ringer, Nobuo Sato, Pia Zurita Jun 2019

Factorization Of Jet Cross Sections In Heavy-Ion Collisions, Jian-Wei Qiu, Felix Ringer, Nobuo Sato, Pia Zurita

Physics Faculty Publications

We propose a new phenomenological approach to establish QCD factorization of jet cross sections in the heavy-ion environment. Starting from a factorization formalism in proton-proton collisions, we introduce medium modified jet functions to capture the leading interaction of jets with the hot and dense QCD medium. A global analysis using a Monte Carlo sampling approach is performed in order to reliably determine the new jet functions from the nuclear modification factor of inclusive jets at the LHC. We find that gluon jets are significantly more suppressed due to the presence of the medium than quark jets. In addition, we observe …


Measurement Of Double-Polarization Asymmetries In The Quasi-Elastic He→ 3 (E→, E′ P) Process, The Jefferson Lab Hall A Collaboration, M. Mihovilović, G. Jin, E. Long, Y.-W. Zhang, K. Allada, B. Anderson, M. Canan, S. Golge, R. Schiavilla Jan 2019

Measurement Of Double-Polarization Asymmetries In The Quasi-Elastic He→ 3 (E→, E′ P) Process, The Jefferson Lab Hall A Collaboration, M. Mihovilović, G. Jin, E. Long, Y.-W. Zhang, K. Allada, B. Anderson, M. Canan, S. Golge, R. Schiavilla

Physics Faculty Publications

We report on a precise measurement of double-polarization asymmetries in electron-induced breakup of 3He proceeding to pd and ppn final states, performed in quasi-elastic kinematics at Q2 = 0.25 (GeV/c)2 for missing momenta up to 250 MeV/c. These observables represent highly sensitive tools to investigate the electromagnetic and spin structure of 3He and the relative importance of two- and three-body effects involved in the breakup reaction dynamics. The measured asymmetries cannot be satisfactorily reproduced by state-of-the-art calculations of 3He unless their three-body segment is adjusted, indicating that the spin-dependent part of …


Three-Particle Systems With Resonant Subprocesses In A Finite Volume, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe Jan 2019

Three-Particle Systems With Resonant Subprocesses In A Finite Volume, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe

Physics Faculty Publications

In previous work, we have developed a relativistic, model-independent three-particle quantization condition, but only under the assumption that no poles are present in the two-particle K matrices that appear as scattering subprocesses [M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90, 116003 (2014); M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509 (2015); R. A. Briceño et al., Phys. Rev. D 95, 074510 (2017).]. Here we lift this restriction, by deriving the quantization condition for identical scalar particles with a G-parity symmetry, in the case that the two-particle K matrix has a pole in the …


Conformal Invariance Of Transverse-Momentum Dependent Parton Distributions Rapidity Evolution, Ian Balitsky, Giovanni A. Chirilli Jan 2019

Conformal Invariance Of Transverse-Momentum Dependent Parton Distributions Rapidity Evolution, Ian Balitsky, Giovanni A. Chirilli

Physics Faculty Publications

We discuss conformal properties of TMD operators and present the result of the conformal rapidity evolution of TMD operators in the Sudakov region.


Structure Constants Of Twist-Two Light-Ray Operators In The Triple Regge Limit, Ian Balitsky Jan 2019

Structure Constants Of Twist-Two Light-Ray Operators In The Triple Regge Limit, Ian Balitsky

Physics Faculty Publications

The structure constants of twist-two operators with spin j in the BFKL limit g2 → 0, j → 1 and g2/j-1∼ 1 are found from the calculation of the three-point correlator of twist-two light-ray operators in the triple Regge limit. It is well known that the anomalous dimensions of twist-two operators in this limit are determined by the BFKL intercept. Similarly, the obtained structure constants are determined by an analytic function of three BFKL intercepts.


Exploring The Structure Of The Bound Proton With Deeply Virtual Compton Scattering, M. Hattawy, N. A. Baltzell, R. Dupré, S. Bültmann, B. Torayev, G. Gavalian, F. Hauenstein, S. E. Kuhn, M. Khachatryan, M. Mayer, J. Poudel, Y. Prok, L. B. Weinstein, J. Zhang, Z. W. Zhao, Clas Collaboration Jan 2019

Exploring The Structure Of The Bound Proton With Deeply Virtual Compton Scattering, M. Hattawy, N. A. Baltzell, R. Dupré, S. Bültmann, B. Torayev, G. Gavalian, F. Hauenstein, S. E. Kuhn, M. Khachatryan, M. Mayer, J. Poudel, Y. Prok, L. B. Weinstein, J. Zhang, Z. W. Zhao, Clas Collaboration

Physics Faculty Publications

In the past two decades, deeply virtual Compton scattering of electrons has been successfully used to advance our knowledge of the partonic structure of the free proton and investigate correlations between the transverse position and the longitudinal momentum of quarks inside the nucleon. Meanwhile, the structure of bound nucleons in nuclei has been studied in inclusive deep-inelastic lepton scattering experiments off nuclear targets, showing a significant difference in longitudinal momentum distribution of quarks inside the bound nucleon, known as the EMC effect. In this Letter, we report the first beam spin asymmetry (BSA) measurement of exclusive deeply virtual Compton scattering …


A Multi-Layered Srf Cavity For Conduction Cooling Applications, Gianluigi Ciovati, G. Cheng, E. Daly, G. V. Eremeev, J. Henry, R. A. Rimmer, Ishwari Prasad Parajuli, U. Pudasaini Jan 2019

A Multi-Layered Srf Cavity For Conduction Cooling Applications, Gianluigi Ciovati, G. Cheng, E. Daly, G. V. Eremeev, J. Henry, R. A. Rimmer, Ishwari Prasad Parajuli, U. Pudasaini

Physics Faculty Publications

Industrial application of SRF technology would favor the use of cryocoolers to conductively cool SRF cavities for particle accelerators, operating at or above 4.3 K. In order to achieve a lower surface resistance than Nb at 4.3 K, a superconductor with higher critical temperature should be used, whereas a metal with higher thermal conductivity than Nb should be used to conduct the heat to the cryocoolers. A standard 1.5 GHz bulk Nb single-cell cavity has been coated with a ~2 µm thick layer of Nb₃Sn on the inner surface and with a 5 mm thick Cu layer on the outer …


First Measurement Of Near-Threshold J/ᴪ Exclusive Photoproduction Off The Proton, M. Ali, M. Amaryan, E.G. Anassontzis, Q. Zhou, X. Zhou, B. Zihlmann, Gluex Collaboration Jan 2019

First Measurement Of Near-Threshold J/ᴪ Exclusive Photoproduction Off The Proton, M. Ali, M. Amaryan, E.G. Anassontzis, Q. Zhou, X. Zhou, B. Zihlmann, Gluex Collaboration

Physics Faculty Publications

We report on the measurement of the γp -> J/ψp cross section from Eγ = 11.8 GeV down to the threshold at 8.2 GeV using a tagged photon beam with the GlueX experiment. We find that the total cross section falls toward the threshold less steeply than expected from two-gluon exchange models. The differential cross section dσ/dt has an exponential slope of 1.67 ± 0.39 GeV-2 at 10.7 GeV average energy. The LHCb pentaquark candidates P+c can be produced in the s channel of this reaction. We see no evidence for them and set model-dependent upper …


First Results On Nucleon Resonance Photocouplings From The Γp → Π+Π−P Reaction, E. Golovatch, V. D. Burkert, D. S. Carman, R. W. Gothe, K. Hicks, M. J. Amaryan, M. Khachatryan, A. Klein, Y. Prok, Clas Collaboration Jan 2019

First Results On Nucleon Resonance Photocouplings From The Γp → Π+Π−P Reaction, E. Golovatch, V. D. Burkert, D. S. Carman, R. W. Gothe, K. Hicks, M. J. Amaryan, M. Khachatryan, A. Klein, Y. Prok, Clas Collaboration

Physics Faculty Publications

We report the first experimental measurements of the nine 1-fold differential cross sections for the γ pπ+πp reaction, obtained with the CLAS detector at Jefferson Laboratory. The measurements cover the invariant mass range of the final state hadrons from 1.6 GeV < W < 2.0 GeV. For the first time the photocouplings of all prominent nucleon resonances in this mass range have been extracted from this exclusive channel. Photoproduction of two charged pions is of particular importance for the evaluation of the photocouplings for the Δ (1620)1/2, Δ (1700)3/2, N(1720)3/2+, and Δ (1905)5/2+ resonances, which have dominant decays into the π π N final states rather than the more extensively studied single meson decay channels.


Polarized Hyperon Production In Single-Inclusive Electron Positron Annihilation At Next-To-Leading Order, Leonard Gamberg, Zhong-Bo Kang, Daniel Pitonyak, Marc Schlegel, Shinsuke Yoshida Jan 2019

Polarized Hyperon Production In Single-Inclusive Electron Positron Annihilation At Next-To-Leading Order, Leonard Gamberg, Zhong-Bo Kang, Daniel Pitonyak, Marc Schlegel, Shinsuke Yoshida

Physics Faculty Publications

We study the production of polarized A-hyperons in electron-positron annihilation. We are particularly interested in the transverse-spin dependence of the cross section for unpolarized incident electron-positron pairs. At high energies this process may be described in the collinear twist-3 framework, where the hadronization transition of partons into a transversely polarized -hyperon can be written in terms of collinear twist-3 fragmentation matrix elements. We calculate the hard partonic cross sections and interference terms in perturbative QCD to next-to-leading order accuracy. We find that the QCD equation of motion plays a crucial role in our analysis. As a byproduct, assuming the validity …


Large Transverse Momentum In Semi-Inclusive Deeply Inelastic Scattering Beyond Lowest Order, B. Wang, J. O. Gonzalez-Hernandez, T. C. Rogers, N. Sato Jan 2019

Large Transverse Momentum In Semi-Inclusive Deeply Inelastic Scattering Beyond Lowest Order, B. Wang, J. O. Gonzalez-Hernandez, T. C. Rogers, N. Sato

Physics Faculty Publications

Motivated by recently observed tension between O(α2s) calculations of very large transverse momentum dependence in both semi-inclusive deep inelastic scattering and Drell-Yan scattering, we repeat the details of the calculation through an O(α2s) transversely differential cross section. The results confirm earlier calculations, and provide further support to the observation that tension exists with current parton distribution and fragmentation functions.


Quark-Mass Dependence Of Elastic Πk Scattering From Qcd, David J. Wilson, Raúl A. Briceño, Jozef K. Dudek, Robert G. Edwards, Christopher E. Thomas Jan 2019

Quark-Mass Dependence Of Elastic Πk Scattering From Qcd, David J. Wilson, Raúl A. Briceño, Jozef K. Dudek, Robert G. Edwards, Christopher E. Thomas

Physics Faculty Publications

We present a determination of the isospin-1/2 elastic πK scattering amplitudes in S and P partial waves using lattice quantum chromodynamics. The amplitudes, constrained for a large number of real-valued energy points, are obtained as a function of light-quark mass, corresponding to four pion masses between 200 and 400 MeV, at a single lattice spacing. Below the first inelastic threshold, the P-wave scattering amplitude is dominated by a single pole singularity that evolves from being a stable bound state at the highest quark mass into a narrow resonance that broadens as the pion and kaon masses are reduced. As in …


Form Factors Of Two-Hadron States From A Covariant Finite-Volume Formalism, Alessandro Baroni, Raúl Briceño, Maxwell T. Hansen, Felipe G. Ortega-Gama Jan 2019

Form Factors Of Two-Hadron States From A Covariant Finite-Volume Formalism, Alessandro Baroni, Raúl Briceño, Maxwell T. Hansen, Felipe G. Ortega-Gama

Physics Faculty Publications

In this work we develop a Lorentz-covariant version of the previously derived formalism for relating finite-volume matrix elements to 2 + J → 2 transition amplitudes. We also give various details relevant for the implementation of this formalism in a realistic numerical lattice QCD calculation. Particular focus is given to the role of single-particle form factors in disentangling finite-volume effects from the triangle diagram that arise when J couples to one of the two hadrons. This also leads to a new finite-volume function, denoted G, the numerical evaluation of which is described in detail. As an example we discuss …


Finite Volume Matrix Elements Of Two-Body States, Alessandro Baroni, Raúl A. Briceño, Maxwell T. Hansen, Filipe G. Ortega-Gama Jan 2019

Finite Volume Matrix Elements Of Two-Body States, Alessandro Baroni, Raúl A. Briceño, Maxwell T. Hansen, Filipe G. Ortega-Gama

Physics Faculty Publications

In this talk, we present a framework for studying structural information of resonances and bound states coupling to two-hadron scattering states. This makes use of a recently proposed finite-volume formalism to determine a class of observables that are experimentally inaccessible but can be accessed via lattice QCD. In particular, we shown that finite-volume two-body matrix elements with one current insertion can be directly related to scattering amplitudes coupling to the external current. For two-hadron systems with resonances or bound states, one can extract the corresponding form factors of these from the energy-dependence of the amplitudes.


Progress Report On The Relativistic Three-Particle Quantization Condition, Tyler D. Blanton, Raúl A. Briceño, Maxwell T. Hanson, Fernando Romero-Lopez, Stephen R. Sharpe Jan 2019

Progress Report On The Relativistic Three-Particle Quantization Condition, Tyler D. Blanton, Raúl A. Briceño, Maxwell T. Hanson, Fernando Romero-Lopez, Stephen R. Sharpe

Physics Faculty Publications

We describe recent work on the relativistic three-particle quantization condition, generalizing and applying the original formalism of Hansen and Sharpe, and of Briceño, Hansen and Sharpe. In particular, we sketch three recent developments: the generalization of the formalism to include K-matrix poles; the numerical implementation of the quantization condition in the isotropic approximation; and ongoing work extending the description of the three-particle divergence-free K matrix beyond the isotropic approximation.


Pdfs In Small Boxes, Raúl A. Briceño, Juan V. Guerrero, Maxwell T. Hansen, Christopher J. Monahan Jan 2019

Pdfs In Small Boxes, Raúl A. Briceño, Juan V. Guerrero, Maxwell T. Hansen, Christopher J. Monahan

Physics Faculty Publications

PDFs can be studied directly using lattice QCD by evaluating matrix elements of non-local operators. A number of groups are pursuing numerical calculations and investigating possible systematic uncertainties. One systematic that has received less attention is the effect of calculating in a finite spacetime volume. Here we present first attempts to assess the role of the finite volume for spatially non-local operators. We find that these matrix elements may suffer from large finite-volume artifacts and more careful investigation is needed.


The Us Electron Ion Collider Accelerator Designs, A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Brucker, A. Camsonne, E. Daly, P.V. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, R.C. York, Et Al. Jan 2019

The Us Electron Ion Collider Accelerator Designs, A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Brucker, A. Camsonne, E. Daly, P.V. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, R.C. York, Et Al.

Physics Faculty Publications

With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D.


Overview Of Srf Deflecting And Crabbing Cavities, Subashini De Silva Jan 2019

Overview Of Srf Deflecting And Crabbing Cavities, Subashini De Silva

Physics Faculty Publications

Developments over the past few years on novel superconducting deflecting and crabbing cavities have introduced advanced rf geometries with improved performance, in comparison to the typical squashed elliptical cavities operating in TM110 type mode. These new structures are compact geometries operating in either TEM type or TE11-like mode. One of the key applications of such cavities is the use of crabbing systems for circular colliders in increasing the luminosity. Crabbing systems are an essential component in future colliders with intense beams and proposed electron-ion colliders. High luminosity upgrade of LHC is planned to implement crabbing systems at two interaction points. …


Field-Dependent Nonlinear Surface Resistance And Its Optimization By Surface Nanostructuring In Superconductors, Takayuki Kubo, Alex Gurevich Jan 2019

Field-Dependent Nonlinear Surface Resistance And Its Optimization By Surface Nanostructuring In Superconductors, Takayuki Kubo, Alex Gurevich

Physics Faculty Publications

We propose a theory of nonlinear surface resistance of a dirty superconductor in a strong radio-frequency (rf) field, taking into account magnetic and nonmagnetic impurities, finite quasiparticle lifetimes, and a thin proximity-coupled normal layer characteristic of the oxide surface of many materials. The Usadel equations were solved to obtain the quasiparticle density of states (DOS) and the low-frequency surface resistance Rs as functions of the rf field amplitude H0. It is shown that the interplay of the broadening of the DOS peaks and a decrease of a quasiparticle gap caused by the rf currents produces a minimum …


Finite Volume Matrix Elements Of Two-Body States With One Current Insertion, Alessandro Baroni, Raúl Briceño, Maxwell Hansen, Felipe Ortega Jan 2019

Finite Volume Matrix Elements Of Two-Body States With One Current Insertion, Alessandro Baroni, Raúl Briceño, Maxwell Hansen, Felipe Ortega

Physics Faculty Publications

No abstract provided.


Design Of A Proof-Of-Principle Crabbing Cavity For The Jefferson Lab Electron-Ion Collider, Hyekyoung Park, Subashini U. De Silva, Salvador I. Sosa Guitron, Jean R. Delayen Jan 2019

Design Of A Proof-Of-Principle Crabbing Cavity For The Jefferson Lab Electron-Ion Collider, Hyekyoung Park, Subashini U. De Silva, Salvador I. Sosa Guitron, Jean R. Delayen

Physics Faculty Publications

The Jefferson Lab design for an electron-ion collider (JLEIC) requires crabbing of the electron and ion beams in order to achieve the design luminosity. A number of options for the crabbing cavities have been explored, and the one which has been selected for the proof-of-principle is a 952 MHz, 2-cell rf-dipole (RFD) cavity. This paper summarizes the electromagnetic design of the cavity and its HOM characteristics.