Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Toward A Generative Modeling Analysis Of Clas Exclusive 2𝜋 Photoproduction, T. Alghamdi, Y. Alanazi, M. Battaglieri, Ł. Bibrzycki, A. V. Golda, A. N. Hiller Blin, E. L. Isupov, Y. Li, L. Marsicano, W. Melnitchouk, V. I. Mokeev, G. Montaña, A. Pilloni, N. Sato, A. P. Szczepaniak, T. Vittorini Jan 2023

Toward A Generative Modeling Analysis Of Clas Exclusive 2𝜋 Photoproduction, T. Alghamdi, Y. Alanazi, M. Battaglieri, Ł. Bibrzycki, A. V. Golda, A. N. Hiller Blin, E. L. Isupov, Y. Li, L. Marsicano, W. Melnitchouk, V. I. Mokeev, G. Montaña, A. Pilloni, N. Sato, A. P. Szczepaniak, T. Vittorini

Computer Science Faculty Publications

AI-supported algorithms, particularly generative models, have been successfully used in a variety of different contexts. This work employs a generative modeling approach to unfold detector effects specifically tailored for exclusive reactions that involve multiparticle final states. Our study demonstrates the preservation of correlations between kinematic variables in a multidimensional phase space. We perform a full closure test on two-pion photoproduction pseudodata generated with a realistic model in the kinematics of the Jefferson Lab CLAS g11 experiment. The overlap of different reaction mechanisms leading to the same final state associated with the CLAS detector’s nontrivial effects represents an ideal test case …


Machine Learning-Based Event Generator For Electron-Proton Scattering, Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A.N. Hiller Blin, M. P. Kuchera, Y. Li, T. Liu, R. E. Mcclellan, W. Melnitchouk, E. Pritchard, M. Robertson, N. Sato, R. Strauss, L. Velasco Jan 2022

Machine Learning-Based Event Generator For Electron-Proton Scattering, Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A.N. Hiller Blin, M. P. Kuchera, Y. Li, T. Liu, R. E. Mcclellan, W. Melnitchouk, E. Pritchard, M. Robertson, N. Sato, R. Strauss, L. Velasco

Computer Science Faculty Publications

We present a new machine learning-based Monte Carlo event generator using generative adversarial networks (GANs) that can be trained with calibrated detector simulations to construct a vertex-level event generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-based detector folding as a fast-surrogate model that mimics detector simulators. The framework is tested and validated on simulated inclusive deep-inelastic scattering data along with existing parametrizations for detector simulation, with uncertainty quantification based on a statistical bootstrapping technique. Our results provide for the first time a realistic proof of concept to mitigate theory bias in inferring vertex-level event …


Gpu Accelerated Long-Term Simulations Of Beam-Beam Effects In Colliders, B. Terzić, V. Morozov, Y. Roblin, F. Lin, H. Zhang, M. Aturban, D. Ranjan, M. Zubair Jan 2014

Gpu Accelerated Long-Term Simulations Of Beam-Beam Effects In Colliders, B. Terzić, V. Morozov, Y. Roblin, F. Lin, H. Zhang, M. Aturban, D. Ranjan, M. Zubair

Computer Science Faculty Publications

We present an update on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order particle tracking (including a symplectic option) for beam transport and the generalized Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, previously computationally prohibitive long-term simulations become tractable. The new code will be used to model the proposed Medium-energy Electron-Ion Collider (MEIC) at Jefferson Lab.