Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Elementary Particles and Fields and String Theory

PDF

Physics Faculty Publications

Series

Simulation

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Cebaf Injector Model For KL Beam Conditions, Sunil Pokharel, Geoffrey A. Krafft, A. S. Hofler, R. Kazimi, M. Bruker, J. Grames, S. Zhang Jan 2022

Cebaf Injector Model For KL Beam Conditions, Sunil Pokharel, Geoffrey A. Krafft, A. S. Hofler, R. Kazimi, M. Bruker, J. Grames, S. Zhang

Physics Faculty Publications

The Jefferson Lab KL experiment will run at the Continuous Electron Beam Accelerator Facility with a much lower bunch repetition rate (7.80 or 15.59 MHz) than nominally used (249.5 or 499 MHz). While the proposed average current of 2.5 - 5.0 µA is relatively low compared to the maximum CEBAF current of approximately 180 µA, the corresponding bunch charge is atypically high for CEBAF injector operation. In this work, we investigated the evolution and transmission of low-rep-rate, high-bunch-charge (0.32 to 0.64 pC) beams through the CEBAF injector. Using the commercial software General Particle Tracer, we have simulated and analyzed the …


Bunch Splitting Simulations For The Jleic Ion Collider Ring, R. Gamage, T. Satogata Jun 2016

Bunch Splitting Simulations For The Jleic Ion Collider Ring, R. Gamage, T. Satogata

Physics Faculty Publications

We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.


Mellin Representation Of The Graviton Bulk-To-Bulk Propagator In Ads Space, Ian Balitsky Jan 2011

Mellin Representation Of The Graviton Bulk-To-Bulk Propagator In Ads Space, Ian Balitsky

Physics Faculty Publications

A Mellin-type representation of the graviton bulk-to-bulk propagator from E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli [Nucl. Phys. B562, 330 (1999)] in terms of the integral over the product of bulk-to-boundary propagators is derived.