Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron Aug 2023

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch Jan 2022

Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch

Masters Theses

"This research presents studies of a novel type of magnetic nozzle that allows for three-dimensional (3-D) steering of a plasma plume. Numerical simulations were performed using Tech-X's USim® software to quantify the nozzle's capabilities. A2-D planar magnetic nozzle was applied to plumes of a nominal pulsed inductive plasma (PIP) source with discharge parameters similar to those of Missouri S&T's Missouri Plasmoid Experiment (MPX). Argon and xenon plumes were considered. Simulations were verified and validated through a mesh convergence study as well as comparison with available experimental data. Periodicity was achieved over the simulation run time and phase angle samples were …


Modeling And Characterization Of Optical Metasurfaces, Mahsa Torfeh Oct 2021

Modeling And Characterization Of Optical Metasurfaces, Mahsa Torfeh

Masters Theses

Metasurfaces are arrays of subwavelength meta-atoms that shape waves in a compact and planar form factor. During recent years, metasurfaces have gained a lot of attention due to their compact form factor, easy integration with other devices, multi functionality and straightforward fabrication using conventional CMOS techniques. To provide and evaluate an efficient metasurface, an optimized design, high resolution fabrication and accurate measurement is required. Analysis and design of metasurfaces require accurate methods for modeling their interactions with waves. Conventional modeling techniques assume that metasurfaces are locally periodic structures excited by plane waves, restricting their applicability to gradually varying metasurfaces that …


Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda Jan 2016

Intensity Control Of Dielectric Barrier Discharge Filaments, Matthew Crawford Paliwoda

Masters Theses

"When operated in a filamentary mode, a volume dielectric barrier discharge (DBD) is known to produce patterned plasma structures. These structures are currently being explored for reconfigurable metamaterial applications. In this work the presence and intensity of a single filament, within an array of filaments, was controlled by adjusting the voltage to that filament's individual needle electrode. The current, voltage, and time-averaged normalized light intensity were measured while varying the voltage of the needle through a self-biasing resistance. For a 7.5 kV, 3.2 kHz DBD in air, the needle-controlled filament intensity varies from that of the surrounding filaments to zero …


Inhibited Spontaneous Emission By Photonic Band Gaps In A Square Lattice Of Periodic Dielectric Medium, Abdullah Al-Ghamdi Aug 1991

Inhibited Spontaneous Emission By Photonic Band Gaps In A Square Lattice Of Periodic Dielectric Medium, Abdullah Al-Ghamdi

Masters Theses

The concepts of band theory for electrons can be employed to describe the behavior of electromagnetic waves propagating in two-dimensional, periodic dielectric structures. These two-dimensional, periodic structures can produce photonic band gaps in which the spontaneous emission by atoms embedded in the structure is prohibited and as a result the performance of many semiconductor devices can be enhanced. The calculations are based on finding the eigenvalues of the algebraic equation for the frequencies of electromagnetic waves moving in a square lattice composed of square dielectric rods with different dielectric constants.