Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Charging Level And Deposition Of Droplets In Electrostatic Painting, Husam Osman Sep 2015

Charging Level And Deposition Of Droplets In Electrostatic Painting, Husam Osman

Electronic Thesis and Dissertation Repository

The process of electrostatic painting has become a very important method of coating in a wide range of industrial applications including those used in the automobile industry. The general principle of spray coating is to deposit liquid droplets or solid powder particles on coated targets having various shapes. The electrostatic coating process consists of three main stages: droplet formation and charging, transportation and deposition. The complication of this process is caused by various factors, such as the physical properties of the material to be used, the appropriate electrical and mechanical conditions and the target surface to be coated, which affects …


Secondary Electrohydrodynamic Flow Generated By Corona And Dielectric Barrier Discharges, Mohammadreza Ghazanchaei Sep 2015

Secondary Electrohydrodynamic Flow Generated By Corona And Dielectric Barrier Discharges, Mohammadreza Ghazanchaei

Electronic Thesis and Dissertation Repository

One of the main goals of applied electrostatics engineering is to discover new perspectives in a wide range of research areas. Controlling the fluid media through electrostatic forces has brought new important scientific and industrial applications. Electric field induced flows, or electrohydrodynamics (EHD), have shown promise in the field of fluid dynamics. Although numerous EHD applications have been explored and extensively studied so far, most of the works are either experimental studies, which are not capable to explain the in depth physics of the phenomena, or detailed analytical studies, which are not time effective. The focus of this study is …


Development Of Superconducting Spoke Cavities For High-Velocity Applications, Christopher Shawn Hopper Apr 2015

Development Of Superconducting Spoke Cavities For High-Velocity Applications, Christopher Shawn Hopper

Physics Theses & Dissertations

To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to β0 ~ 0.6, but there is a growing interest in possible applications of spoke cavities for high-velocity applications. The first task is to explore the design parameter space for low-frequency, high-velocity, single- and double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. Once an electromagnetically optimized, high-velocity spoke cavity is designed, there are several other characteristics that need to be investigated. These include multipacting scenarios, higher-order mode excitation …


Molecular Dynamics Study On Defect Reduction Strategies Towards The Fabrication Of High Performance Cd1-Xznxte/Cds Solar Cells, Jose Juan Chavez Jan 2015

Molecular Dynamics Study On Defect Reduction Strategies Towards The Fabrication Of High Performance Cd1-Xznxte/Cds Solar Cells, Jose Juan Chavez

Open Access Theses & Dissertations

Cadmium Telluride is a material widely used in terrestrial thin film photovoltaic applications due to its nearly ideal band gap (~1.5 eV) and high absorption coefficient. Due to its low manufacturing cost, this technology has the potential to become a significant energy resource if higher energy conversion efficiencies are achieved. However, the module efficiencies (~14%) are still far from the theoretical maximum (~30%) for this material in a single junction configuration. The reason behind this low performance is attributed to the high number of defects that are present within the device materials. The physics behind the formation mechanisms of these …


Extraction Of Carrier Mobility And Interface Trap Density In Ingaas Metal Oxide Semiconductor Structures Using Gated Hall Method, Thenappan Chidambaram Jan 2015

Extraction Of Carrier Mobility And Interface Trap Density In Ingaas Metal Oxide Semiconductor Structures Using Gated Hall Method, Thenappan Chidambaram

Legacy Theses & Dissertations (2009 - 2024)

III-V semiconductors are potential candidates to replace Si as a channel material in next generation CMOS integrated circuits owing to their superior carrier mobilities. Low density of states (DOS) and typically high interface and border trap densities (Dit) in high mobility group III-V semiconductors provide difficulties in quantification of Dit near the conduction band edge. The trap response above the threshold voltage of a MOSFET can be very fast, and conventional Dit extraction methods, based on capacitance/conductance response (CV methods) of MOS capacitors at frequencies <1MHz, cannot distinguish conducting and trapped carriers. In addition, the CV methods have to deal with high dispersion in the accumulation region that makes it a difficult task to measure the true oxide capacitance, Cox value. Another implication of these properties of III-V interfaces is an ambiguity of determination of electron density in the MOSFET channel. Traditional evaluation of carrier density by integration of the C-V curve, gives incorrect values for Dit and mobility. Here we employ gated Hall method to quantify the Dit spectrum at the high-κ oxide/III-V semiconductor interface for buried and surface channel devices using Hall measurement and capacitance-voltage data. Determination of electron density directly from Hall measurements allows for obtaining true mobility values