Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics

PDF

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 286

Full-Text Articles in Physics

Exponential Fusion Of Interpolated Frames Network (Efif-Net): Advancing Multi-Frame Image Super-Resolution With Convolutional Neural Networks, Hamed Elwarfalli, Dylan Flaute, Russell C. Hardie Jan 2024

Exponential Fusion Of Interpolated Frames Network (Efif-Net): Advancing Multi-Frame Image Super-Resolution With Convolutional Neural Networks, Hamed Elwarfalli, Dylan Flaute, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Convolutional neural networks (CNNs) have become instrumental in advancing multi-frame image super-resolution (SR), a technique that merges multiple low-resolution images of the same scene into a high-resolution image. In this paper, a novel deep learning multi-frame SR algorithm is introduced. The proposed CNN model, named Exponential Fusion of Interpolated Frames Network (EFIF-Net), seamlessly integrates fusion and restoration within an end-to-end network. Key features of the new EFIF-Net include a custom exponentially weighted fusion (EWF) layer for image fusion and a modification of the Residual Channel Attention Network for restoration to deblur the fused image. Input frames are registered with subpixel …


Intelligent Millimeter-Wave System For Human Activity Monitoring For Telemedicine, Abdullah K. Alhazmi, Mubarak A. Alanazi, Awwad H. Alshehry, Saleh M. Alshahry, Jennifer Jaszek, Cameron Djukic, Anna Brown, Kurt Jackson, Vamsy P. Chodavarapu Jan 2024

Intelligent Millimeter-Wave System For Human Activity Monitoring For Telemedicine, Abdullah K. Alhazmi, Mubarak A. Alanazi, Awwad H. Alshehry, Saleh M. Alshahry, Jennifer Jaszek, Cameron Djukic, Anna Brown, Kurt Jackson, Vamsy P. Chodavarapu

Electrical and Computer Engineering Faculty Publications

Telemedicine has the potential to improve access and delivery of healthcare to diverse and aging populations. Recent advances in technology allow for remote monitoring of physiological measures such as heart rate, oxygen saturation, blood glucose, and blood pressure. However, the ability to accurately detect falls and monitor physical activity remotely without invading privacy or remembering to wear a costly device remains an ongoing concern. Our proposed system utilizes a millimeter-wave (mmwave) radar sensor (IWR6843ISK-ODS) connected to an NVIDIA Jetson Nano board for continuous monitoring of human activity. We developed a PointNet neural network for real-time human activity monitoring that can …


Spectral Broadening Effects On Pulsed-Source Digital Holography, Steven A. Owens, Mark F. Spencer, Glen P. Perram Aug 2023

Spectral Broadening Effects On Pulsed-Source Digital Holography, Steven A. Owens, Mark F. Spencer, Glen P. Perram

Faculty Publications

Using a pulsed configuration, a digital-holographic system is setup in the off-axis image plane recording geometry, and spectral broadening via pseudo-random bit sequence is used to degrade the temporal coherence of the master-oscillator laser. The associated effects on the signal-to-noise ratio are then measured in terms of the ambiguity and coherence efficiencies. It is found that the ambiguity efficiency, which is a function of signal-reference pulse overlap, is not affected by the effects of spectral broadening. The coherence efficiency, on the other hand, is affected. As a result, the coherence efficiency, which is a function of effective fringe visibility, is …


Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily May 2023

Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily

AFIT Patents

The present invention relates to evanescently coupling whispering gallery mode optical resonators having a liquid coupling as well as methods of making and using same. The aforementioned evanescently coupling whispering gallery mode optical resonators having a liquid couplings provide increased tunability and sensing selectivity over current same. The aforementioned. Applicants’ method of making evanescent-wave coupled optical resonators can be achieved while having coupling gap dimensions that can be fabricated using standard photolithography. Thus economic, rapid, and mass production of coupled WGM resonators-based lasers, sensors, and signal processors for a broad range of applications can be realized.


Effect On Focusing Fields By Ferromagnetic Cell Cores In Linear Induction Accelerators, Cooper Guillaume May 2023

Effect On Focusing Fields By Ferromagnetic Cell Cores In Linear Induction Accelerators, Cooper Guillaume

Senior Honors Theses

In the Los Alamos National Laboratories DARHT facility, there are two perpendicular linear induction accelerators, LIAs. The LIAs’ solenoids produce magnetic fields which focus the electron beam. Simultaneously, the accelerating pulse creates a magnetic field. These two field intensities act upon a ferromagnetic material in the cells to enhance magnetic flux density. Due to the nonlinearity of the material, this flux density will reach a saturation point. In turn, the magnetic field intensity of the axial solenoidal magnetic field will be affected and slightly altered. The width of the electron beam will increase, causing a decrease in effectiveness. Through simulation, …


Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


A Patient-Specific Algorithm For Lung Segmentation In Chest Radiographs, Manawaduge Supun De Silva, Barath Narayanan Narayanan, Russell C. Hardie Nov 2022

A Patient-Specific Algorithm For Lung Segmentation In Chest Radiographs, Manawaduge Supun De Silva, Barath Narayanan Narayanan, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

Lung segmentation plays an important role in computer-aided detection and diagnosis using chest radiographs (CRs). Currently, the U-Net and DeepLabv3+ convolutional neural network architectures are widely used to perform CR lung segmentation. To boost performance, ensemble methods are often used, whereby probability map outputs from several networks operating on the same input image are averaged. However, not all networks perform adequately for any specific patient image, even if the average network performance is good. To address this, we present a novel multi-network ensemble method that employs a selector network. The selector network evaluates the segmentation outputs from several networks; on …


Glaciernet2: A Hybrid Multi-Model Learning Architecture For Alpine Glacier Mapping, Zhiyuan Xie, Umesh K. Haritashya, Vijayan K. Asari, Michael P. Bishop, Jeffrey S. Kargel, Theus Aspiras Aug 2022

Glaciernet2: A Hybrid Multi-Model Learning Architecture For Alpine Glacier Mapping, Zhiyuan Xie, Umesh K. Haritashya, Vijayan K. Asari, Michael P. Bishop, Jeffrey S. Kargel, Theus Aspiras

Electrical and Computer Engineering Faculty Publications

In recent decades, climate change has significantly affected glacier dynamics, resulting in mass loss and an increased risk of glacier-related hazards including supraglacial and proglacial lake development, as well as catastrophic outburst flooding. Rapidly changing conditions dictate the need for continuous and detailed ob-servations and analysis of climate-glacier dynamics. Thematic and quantitative information regarding glacier geometry is fundamental for understanding climate forcing and the sensitivity of glaciers to climate change, however, accurately mapping debris-cover glaciers (DCGs) is notoriously difficult based upon the use of spectral information and conventional machine-learning techniques. The objective of this research is to improve upon an …


Towards A Low-Cost Solution For Gait Analysis Using Millimeter Wave Sensor And Machine Learning, Mubarak A. Alanazi, Abdullah K. Alhazmi, Osama Alsattam, Kara Gnau, Meghan Brown, Shannon Thiel, Kurt Jackson, Vamsy P. Chodavarapu Aug 2022

Towards A Low-Cost Solution For Gait Analysis Using Millimeter Wave Sensor And Machine Learning, Mubarak A. Alanazi, Abdullah K. Alhazmi, Osama Alsattam, Kara Gnau, Meghan Brown, Shannon Thiel, Kurt Jackson, Vamsy P. Chodavarapu

Electrical and Computer Engineering Faculty Publications

Human Activity Recognition (HAR) that includes gait analysis may be useful for various rehabilitation and telemonitoring applications. Current gait analysis methods, such as wearables or cameras, have privacy and operational constraints, especially when used with older adults. Millimeter-Wave (MMW) radar is a promising solution for gait applications because of its low-cost, better privacy, and resilience to ambient light and climate conditions. This paper presents a novel human gait analysis method that combines the micro-Doppler spectrogram and skeletal pose estimation using MMW radar for HAR. In our approach, we used the Texas Instruments IWR6843ISK-ODS MMW radar to obtain the micro-Doppler spectrogram …


Noncontact Liquid Crystalline Broadband Optoacoustic Sensors, Hengky Chandrahalim, Michael T. Dela Cruz Jun 2022

Noncontact Liquid Crystalline Broadband Optoacoustic Sensors, Hengky Chandrahalim, Michael T. Dela Cruz

AFIT Patents

An optoacoustic sensor includes a liquid crystal (LC) cell formed between top and bottom plates of transparent material. A transverse grating formed across the LC cell that forms an optical transmission bandgap. A CL is aligned to form a spring-like, tunable Bragg grating that is naturally responsive to external agitations providing a spectral transition regime, or edge, in the optical transmission bandgap of the transverse grating that respond to broadband acoustic waves. The optoacoustic sensor includes a narrowband light source that is oriented to transmit light through the top plate, the LC cell, and the bottom plate. The optoacoustic sensor …


Imnets: Deep Learning Using An Incremental Modular Network Synthesis Approach For Medical Imaging Applications, Redha A. Ali, Russell C. Hardie, Barath Narayanan Narayanan, Temesguen Messay Jun 2022

Imnets: Deep Learning Using An Incremental Modular Network Synthesis Approach For Medical Imaging Applications, Redha A. Ali, Russell C. Hardie, Barath Narayanan Narayanan, Temesguen Messay

Electrical and Computer Engineering Faculty Publications

Deep learning approaches play a crucial role in computer-aided diagnosis systems to support clinical decision-making. However, developing such automated solutions is challenging due to the limited availability of annotated medical data. In this study, we proposed a novel and computationally efficient deep learning approach to leverage small data for learning generalizable and domain invariant representations in different medical imaging applications such as malaria, diabetic retinopathy, and tuberculosis. We refer to our approach as Incremental Modular Network Synthesis (IMNS), and the resulting CNNs as Incremental Modular Networks (IMNets). Our IMNS approach is to use small network modules that we call SubNets …


Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim May 2022

Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of the optical fighter using a two-photon polymerization process on a photosensitive polymer by a three-dimensional micromachining device. The three-dimensional microscopic optical structure having a hinged optical layer pivotally connected to a distal portion of a suspended structure. A reflective layer is deposited on a mirror surface of the hinged optical layer while in an open position. The hinged optical layer is subsequently positioned in the closed position to align the mirror surface to at least partially reflect a light signal back …


Microscopic Nuclei Classification, Segmentation, And Detection With Improved Deep Convolutional Neural Networks (Dcnn), Md Zahangir Alom, Vijayan K. Asari, Anil Parwani, Tarek M. Taha Apr 2022

Microscopic Nuclei Classification, Segmentation, And Detection With Improved Deep Convolutional Neural Networks (Dcnn), Md Zahangir Alom, Vijayan K. Asari, Anil Parwani, Tarek M. Taha

Electrical and Computer Engineering Faculty Publications

Background Nuclei classification, segmentation, and detection from pathological images are challenging tasks due to cellular heterogeneity in the Whole Slide Images (WSI). Methods In this work, we propose advanced DCNN models for nuclei classification, segmentation, and detection tasks. The Densely Connected Neural Network (DCNN) and Densely Connected Recurrent Convolutional Network (DCRN) models are applied for the nuclei classification tasks. The Recurrent Residual U-Net (R2U-Net) and the R2UNet-based regression model named the University of Dayton Net (UD-Net) are applied for nuclei segmentation and detection tasks respectively. The experiments are conducted on publicly available datasets, including Routine Colon Cancer (RCC) classification and …


Towards Improved Inertial Navigation By Reducing Errors Using Deep Learning Methodology, Hua Chen, Tarek M. Taha, Vamsy P. Chodavarapu Apr 2022

Towards Improved Inertial Navigation By Reducing Errors Using Deep Learning Methodology, Hua Chen, Tarek M. Taha, Vamsy P. Chodavarapu

Electrical and Computer Engineering Faculty Publications

Autonomous vehicles make use of an Inertial Navigation System (INS) as part of vehicular sensor fusion in many situations including GPS-denied environments such as dense urban places, multi-level parking structures, and areas with thick tree-coverage. The INS unit incorporates an Inertial Measurement Unit (IMU) to process the linear acceleration and angular velocity data to obtain orientation, position, and velocity information using mechanization equations. In this work, we describe a novel deep-learning-based methodology, using Convolutional Neural Networks (CNN), to reduce errors from MEMS IMU sensors. We develop a CNN-based approach that can learn from the responses of a particular inertial sensor …


The Surface Conditions Of Spacecraft Panels May Significantly Affect Spacecraft Survivability, Trace Taylor Feb 2022

The Surface Conditions Of Spacecraft Panels May Significantly Affect Spacecraft Survivability, Trace Taylor

Research on Capitol Hill

USU junior Trace grew up in Brigham City and studies physics and electrical engineering. The majority of spacecraft failure is caused by electron charging on the outer surfaces of the craft. Additionally, contaminants on the craft can cause a film over surface panels, increasing the problem. Trace is studying how roughness on panels can mitigate this contamination as it affects the charging that can lead to craft failure. This research will help determine what optimal panel materials should be used in future spacecraft construction. Trace started research almost as soon as he came to campus in his freshman year, and …


A Deep Neural Network For Early Detection And Prediction Of Chronic Kidney Disease, Vijendra Singh, Vijayan K. Asari, Rajkumar Rajasekaran Jan 2022

A Deep Neural Network For Early Detection And Prediction Of Chronic Kidney Disease, Vijendra Singh, Vijayan K. Asari, Rajkumar Rajasekaran

Electrical and Computer Engineering Faculty Publications

Diabetes and high blood pressure are the primary causes of Chronic Kidney Disease (CKD). Glomerular Filtration Rate (GFR) and kidney damage markers are used by researchers around the world to identify CKD as a condition that leads to reduced renal function over time. A person with CKD has a higher chance of dying young. Doctors face a difficult task in diagnosing the different diseases linked to CKD at an early stage in order to prevent the disease. This research presents a novel deep learning model for the early detection and prediction of CKD. This research objectives to create a deep …


Circuit Optimization Techniques For Efficient Ex-Situ Training Of Robust Memristor Based Liquid State Machine, Alex Henderson, Christopher Yakopcic, Cory Merkel, Steven Harbour, Tarek M. Taha, Hananel Hazan Jan 2022

Circuit Optimization Techniques For Efficient Ex-Situ Training Of Robust Memristor Based Liquid State Machine, Alex Henderson, Christopher Yakopcic, Cory Merkel, Steven Harbour, Tarek M. Taha, Hananel Hazan

Electrical and Computer Engineering Faculty Publications

Spiking neural network hardware offers a high performance, power-efficient and robust platform for the processing of complex data. Many of these systems require supervised learning, which poses a challenge when using gradient-based algorithms due to the discontinuous properties of SNNs. Memristor based hardware can offer gains in portability, power reduction, and throughput efficiency when compared to pure CMOS. This paper proposes a memristor-based spiking liquid state machine (LSM). The inherent dynamics of the LSM permit the use of supervised learning without backpropagation for weight updates. To carry out the design space evaluation of the LSM for optimal hardware performance, several …


Meltpondnet: A Swin Transformer U-Net For Detection Of Melt Ponds On Arctic Sea Ice, Ivan Sudakow, Vijayan K. Asari, Ruixu Liu, Denis Demchev Jan 2022

Meltpondnet: A Swin Transformer U-Net For Detection Of Melt Ponds On Arctic Sea Ice, Ivan Sudakow, Vijayan K. Asari, Ruixu Liu, Denis Demchev

Electrical and Computer Engineering Faculty Publications

High-resolution aerial photographs of Arctic region are a great source for different sea ice feature recognition, which are crucial to validate, tune, and improve climate models. Melt ponds on the surface of melting Arctic sea ice are of particular interest as they are sensitive and valuable indicators and are proxy to the processes in the Arctic climate system. Manual analysis of this remote sensing data is extremely difficult and time-consuming due to the complex shapes and unpredictable boundaries of the melt ponds, and that leads to the necessity for automatizing the processes. In this study, we propose a robust and …


A Progressive Learning Strategy For Large-Scale Glacier Mapping, Zhiyuan Xie, Umesh K. Haritashya, Vijayan K. Asari Jan 2022

A Progressive Learning Strategy For Large-Scale Glacier Mapping, Zhiyuan Xie, Umesh K. Haritashya, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

In recent years, the worldwide temperature increase has resulted in rapid deglaciation and a higher risk of glacier-related natural hazards such as flooding and debris flow. Due to the severity of these hazards, continuous observation and detailed analysis of glacier fluctuations are crucial. Many such analyses require an accurately delineated glacier boundary. However, the complexity and heterogeneity of glaciers, particularly debris-covered glaciers (DCGs), poses a challenge for glacier mapping when using conventional remote sensing or machine-learning techniques. Some examples exist about small-scale automated glacier mapping, but large or regional-scale mapping is challenging. Previously, a deep-learning-based approach named GlacierNet2 had been …


Evaluating Deep-Learning Models For Debris-Covered Glacier Mapping, Zhiyuan Xie, Vijayan K. Asari, Umesh K. Haritashya Dec 2021

Evaluating Deep-Learning Models For Debris-Covered Glacier Mapping, Zhiyuan Xie, Vijayan K. Asari, Umesh K. Haritashya

Electrical and Computer Engineering Faculty Publications

In recent decades, mountain glaciers have experienced the impact of climate change in the form of accelerated glacier retreat and other glacier-related hazards such as mass wasting and glacier lake outburst floods. Since there are wide-ranging societal consequences of glacier retreat and hazards, monitoring these glaciers as accurately and repeatedly as possible is important. However, the accurate glacier boundary, especially the debriscovered glacier (DCG) boundary, which is one of the primary inputs in many glacier analyses, remains a challenge even after many years of research using conventional remote sensing methods or machine-learning methods. The GlacierNet, a deep-learning-based approach, utilized the …


Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli Oct 2021

Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli

Electrical and Computer Engineering Faculty Publications

Super-resolution (SR) aims to increase the resolution of imagery. Applications include security, medical imaging, and object recognition. We propose a deep learning-based SR system that takes a hexagonally sampled low-resolution image as an input and generates a rectangularly sampled SR image as an output. For training and testing, we use a realistic observation model that includes optical degradation from diffraction and sensor degradation from detector integration. Our SR approach first uses non-uniform interpolation to partially upsample the observed hexagonal imagery and convert it to a rectangular grid. We then leverage a state-of-the-art convolutional neural network (CNN) architecture designed for SR …


A Unified Framework Of Deep Learning-Based Facial Expression Recognition System For Diversified Applications, Sanoar Hossain, Saiyed Umer, Vijayan K. Asari, Ranjeet Kumar Rout Oct 2021

A Unified Framework Of Deep Learning-Based Facial Expression Recognition System For Diversified Applications, Sanoar Hossain, Saiyed Umer, Vijayan K. Asari, Ranjeet Kumar Rout

Electrical and Computer Engineering Faculty Publications

This work proposes a facial expression recognition system for a diversified field of appli- cations. The purpose of the proposed system is to predict the type of expressions in a human face region. The implementation of the proposed method is fragmented into three components. In the first component, from the given input image, a tree-structured part model has been applied that predicts some landmark points on the input image to detect facial regions. The detected face region was normalized to its fixed size and then down-sampled to its varying sizes such that the advantages, due to the effect of multi-resolution …


Efficient, Dual-Particle Directional Detection System Using A Rotating Scatter Mask, Robert Olesen, Bryan V. Egner, Darren E. Holland, Valerie Martin, James E. Bevins, Larry W. Burggraf, Buckley E. O'Day Iii Jul 2021

Efficient, Dual-Particle Directional Detection System Using A Rotating Scatter Mask, Robert Olesen, Bryan V. Egner, Darren E. Holland, Valerie Martin, James E. Bevins, Larry W. Burggraf, Buckley E. O'Day Iii

AFIT Patents

A directional radiation detection system and an omnidirectional radiation detector. The omnidirectional radiation detector detects radiation comprising at least one of: (i) gamma rays; and (ii) neutron particles. A radiation scatter mask (RSM) of the radiation detection system includes a rotating sleeve received over the omnidirectional radiation detector and rotating about a longitudinal axis. The RSM further includes: (i) a fin extending longitudinally from one side of the rotating sleeve; and (ii) a wall extending from the rotating sleeve and spaced apart from the fin having an upper end distally positioned on the rotating sleeve spaced apart or next to …


A Study Of Magnetism And Possible Mixed-State Superconductivity In Phosphorus-Doped Graphene, Julian E. Gil Pinzon Jun 2021

A Study Of Magnetism And Possible Mixed-State Superconductivity In Phosphorus-Doped Graphene, Julian E. Gil Pinzon

FIU Electronic Theses and Dissertations

Evidence of superconducting vortices, and consequently mixed-state superconductivity, has been observed in phosphorus-doped graphene at temperatures as high as 260 K. The evidence includes transport measurements in the form of resistance versus temperature curves, and magnetic measurements in the form of susceptibility and magnetic Nernst effect measurements. The drops in resistance, periodic steps in resistance, the appearance of Nernst peaks and hysteresis all point to phosphorus-doped graphene having a broad resistive region due to flux flow as well as a Berezinskii-Kosterlitz-Thouless (BKT) transition at lower temperatures.

The observation of irreversible behavior in phosphorus-doped graphene under the influence of a thermal …


Guest Editorial: Edge Intelligence For Beyond 5g Networks, Yan Zhang, Zhiyong Feng, Hassnaa Moustafa, Feng Ye, Usman Javaid, Chunfen Cui Apr 2021

Guest Editorial: Edge Intelligence For Beyond 5g Networks, Yan Zhang, Zhiyong Feng, Hassnaa Moustafa, Feng Ye, Usman Javaid, Chunfen Cui

Electrical and Computer Engineering Faculty Publications

Beyond fifth-generation (B5G) networks, or so-called "6G", is the next-generation wireless communications systems that will radically change how Society evolves. Edge intelligence is emerging as a new concept and has extremely high potential in addressing the new challenges in B5G networks by providing mobile edge computing and edge caching capabilities together with Artificial Intelligence (AI) to the proximity of end users. In edge intelligence empowered B5G networks, edge resources are managed by AI systems for offering powerful computational processing and massive data acquisition locally at edge networks. AI helps to obtain efficient resource scheduling strategies in a complex environment with …


Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa Mar 2021

Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa

Electrical and Computer Engineering Faculty Publications

We propose accelerated implementations of bilateral filter (BF) and nonlocal means (NLM) called color-compressive bilateral filter (CCBF) and color-compressive nonlocal means (CCNLM). CCBF and CCNLM are random filters, whose Monte-Carlo averaged output images are identical to the output images of conventional BF and NLM, respectively. However, CCBF and CCNLM are considerably faster because the spatial processing of multiple color channels are combined into a single random filtering process. This implies that the complexity of CCBF and CCNLM is less sensitive to color dimension (e.g., hyperspectral images) relatively to other BF and NLM methods. We experimentally verified that the execution time …


Deep Learning For Anisoplanatic Optical Turbulence Mitigation In Long-Range Imaging, Matthew A. Hoffmire, Russell C. Hardie, Michael A. Rucci, Richard Van Hook, Barry K. Karch Mar 2021

Deep Learning For Anisoplanatic Optical Turbulence Mitigation In Long-Range Imaging, Matthew A. Hoffmire, Russell C. Hardie, Michael A. Rucci, Richard Van Hook, Barry K. Karch

Electrical and Computer Engineering Faculty Publications

We present a deep learning approach for restoring images degraded by atmospheric optical turbulence. We consider the case of terrestrial imaging over long ranges with a wide field-of-view. This produces an anisoplanatic imaging scenario where turbulence warping and blurring vary spatially across the image. The proposed turbulence mitigation (TM) method assumes that a sequence of short-exposure images is acquired. A block matching (BM) registration algorithm is applied to the observed frames for dewarping, and the resulting images are averaged. A convolutional neural network (CNN) is then employed to perform spatially adaptive restoration. We refer to the proposed TM algorithm as …


Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu Jan 2021

Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which use viscoelastic non-Newtonian fluid. This study numerically investigates the EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two reservoirs on either side. The flow is modelled by the Oldroyd-B (OB) model coupled with the Poisson–Boltzmann model. EOF of polyacrylamide (PAA) solution is studied as a function of the PAA concentration and the applied electric field. In contrast to steady EOF of Newtonian fluid, the EOF of PAA solution becomes unstable when the applied electric field (PAA concentration) exceeds a critical value for …


Ieee Access Special Section Editorial: Trends And Advances In Bio-Inspired Image-Based Deep Learning Methodologies And Applications, Peter Peer, Carlos M. Travieso-Gonzalez, Vijayan K. Asari, Malay Kishore Dutta Jan 2021

Ieee Access Special Section Editorial: Trends And Advances In Bio-Inspired Image-Based Deep Learning Methodologies And Applications, Peter Peer, Carlos M. Travieso-Gonzalez, Vijayan K. Asari, Malay Kishore Dutta

Electrical and Computer Engineering Faculty Publications

Many of the technological advances we enjoy today have been inspired by biological systems due to their ease of operation and outstanding efficiency. Designing technological solutions based on biological inspiration has become a cornerstone of research in a variety of areas ranging from control theory and optimization to computer vision, machine learning, and artificial intelligence. Especially in the latter few areas, biologically relevant solutions are becoming increasingly important as we look for new ways to make artificial systems more efficient, intelligent, and overall effective.


Dales Objects: A Large Scale Benchmark Dataset For Instance Segmentation In Aerial Lidar, Nina M. Singer, Vijayan K. Asari Jan 2021

Dales Objects: A Large Scale Benchmark Dataset For Instance Segmentation In Aerial Lidar, Nina M. Singer, Vijayan K. Asari

Electrical and Computer Engineering Faculty Publications

We present DALES Objects, a large-scale instance segmentation benchmark dataset for aerial lidar. DALES Objects contains close to half a billion hand-labeled points, including semantic and instance segmentation labels. DALES Objects is an extension of the DALES (Varney et al., 2020) dataset, adding additional intensity and instance segmentation annotation. This paper provides an overview of the data collection, preprocessing, hand-labeling strategy, and final data format. We propose relevant evaluation metrics and provide insights into potential challenges when evaluating this benchmark dataset. Finally, we provide information about how researchers can access the dataset for their use at go.udayton.edu/dales3d.