Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

PDF

Electrical properties and parameters

Articles 1 - 4 of 4

Full-Text Articles in Physics

Investigation On The Rons And Bactericidal Effects Induced By He + O2 Cold Plasma Jets: In Open Air And In An Airtight Chamber, Han Xu, Dingxin Liu, Weitao Wang, Zhijie Liu, Li Guo, Mingzhe Rong, Michael G. Kong Nov 2018

Investigation On The Rons And Bactericidal Effects Induced By He + O2 Cold Plasma Jets: In Open Air And In An Airtight Chamber, Han Xu, Dingxin Liu, Weitao Wang, Zhijie Liu, Li Guo, Mingzhe Rong, Michael G. Kong

Bioelectrics Publications

He + O2 plasma jets in open air and in an airtight chamber are comparatively studied, with respect to their production of gaseous/aqueous reactive species and their antibacterial effects. Under the same discharge power, the plasma jet in open air has higher densities of gaseous reactive species and a higher concentration of aqueous H2O2 but lower concentrations of aqueous OH and O2-. In addition, the increase in the O2 ratio in He in both plasma jets causes a linear decrease in the population of gaseous reactive species, except for O(3p5P) …


Microscopic Analysis For Water Stressed By High Electric Fields In The Prebreakdown Regime, R. P. Joshi, J. Qian, K. H. Schoenbach, E. Schamiloglu Jan 2004

Microscopic Analysis For Water Stressed By High Electric Fields In The Prebreakdown Regime, R. P. Joshi, J. Qian, K. H. Schoenbach, E. Schamiloglu

Bioelectrics Publications

Analysis of the electrical double layer at the electrode-water interface for voltages close to the breakdown point has been carried out based on a static, Monte Carlo approach. It is shown that strong dipole realignment, ion-ion correlation, and finite-size effects can greatly modify the electric fields and local permittivity (hence, leading to optical structure) at the electrode interface. Dramatic enhancements of Schottky injection, providing a source for electronic controlled breakdown, are possible. It is also shown that large pressures associated with the Maxwell stress tensor would be created at the electrode boundaries. Our results depend on the ionic density, and …


Are Microbubbles Necessary For The Breakdown Of Liquid Water Subjected To A Submicrosecond Pulse?, R. P. Joshi, J. Qian, G. Zhao, J. Kolb, K. H. Schoenbach, E. Schamiloglu, J. Gaudet Jan 2004

Are Microbubbles Necessary For The Breakdown Of Liquid Water Subjected To A Submicrosecond Pulse?, R. P. Joshi, J. Qian, G. Zhao, J. Kolb, K. H. Schoenbach, E. Schamiloglu, J. Gaudet

Electrical & Computer Engineering Faculty Publications

Electrical breakdown in homogeneous liquid water for an ∼ 100 ns voltage pulse is analyzed. It is shown that electron-impact ionization is not likely to be important and could only be operative for low-density situations or possibly under optical excitation. Simulation results also indicate that field ionization of liquid water can lead to a liquid breakdown provided the ionization energies were very low in the order of 2.3eV. Under such conditions, an electric-field collapse at the anode and plasma propagation toward the cathode, with minimal physical charge transport, is predicted. However, the low, unphysical ionization energies necessary for matching …


Paschen's Law For A Hollow Cathode Discharge, H. Eichhorn, K. H. Schoenbach, T. Tessnow Jan 1993

Paschen's Law For A Hollow Cathode Discharge, H. Eichhorn, K. H. Schoenbach, T. Tessnow

Bioelectrics Publications

An expression for the breakdown voltage of a one‐dimensional hollow cathode discharge has been derived. The breakdown condition which corresponds to Paschen’s law contains, in addition to the first Townsend coefficient, and the secondary electron emission coefficient two parameters which characterize the reflecting action of the electric field and the lifetime of the electrons in the discharge. The breakdown voltage for a hollow cathode discharge in helium was calculated and compared to that of a glow discharge operating under similar conditions.