Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physics

Directional Microwave Emission From Femtosecond-Laser Illuminated Linear Arrays Of Superconducting Rings, Thomas J. Bullard, Kyle Frische, Charlie Ebbing, Stephen J. Hageman, John Morrison, John Bulmer, Enam A. Chowdury, Michael L. Dexter, Timothy J. Haugan, Anil K. Patniak Dec 2023

Directional Microwave Emission From Femtosecond-Laser Illuminated Linear Arrays Of Superconducting Rings, Thomas J. Bullard, Kyle Frische, Charlie Ebbing, Stephen J. Hageman, John Morrison, John Bulmer, Enam A. Chowdury, Michael L. Dexter, Timothy J. Haugan, Anil K. Patniak

Faculty Publications

We examine the electromagnetic emission from two photo-illuminated linear arrays composed of inductively charged superconducting ring elements. The arrays are illuminated by an ultrafast infrared laser that triggers microwave broadband emission detected in the 1–26 GHz range. Based on constructive interference from the arrays a narrowing of the forward radiation lobe is observed with increasing element count and frequency demonstrating directed GHz emission. Results suggest that higher frequencies and a larger number of elements are achievable leading to a unique pulsed array emitter concept that can span frequencies from the microwave to the terahertz (THz) regime.


System-Level Noise Performance Of Coherent Imaging Systems, Derek J. Burrell, Joshua H. Follansbee, Mark F. Spencer, Ronald G. Driggers Nov 2023

System-Level Noise Performance Of Coherent Imaging Systems, Derek J. Burrell, Joshua H. Follansbee, Mark F. Spencer, Ronald G. Driggers

Faculty Publications

We provide an in-depth analysis of noise considerations in coherent imaging, accounting for speckle and scintillation in addition to “conventional” image noise. Specifically, we formulate closed-form expressions for total effective noise in the presence of speckle only, scintillation only, and speckle combined with scintillation. We find analytically that photon shot noise is uncorrelated with both speckle and weak-to-moderate scintillation, despite their shared dependence on the mean signal. Furthermore, unmitigated speckle and scintillation noise tends to dominate coherent-imaging performance due to a squared mean-signal dependence. Strong coupling occurs between speckle and scintillation when both are present, and we characterize this behavior …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman Sep 2023

Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman

Directivity

The directivity function of a played musical instrument describes the angular dependence of its acoustic radiation and diffraction about the instrument, musician, and musician’s chair. Directivity influences sound in rehearsal, performance, and recording environments and signals in audio systems. Because high-resolution, spherically comprehensive measurements of played musical instruments have been unavailable in the past, the authors have undertaken research to produce and share such data for studies of musical instruments, simulations of acoustical environments, optimizations of microphone placements, and other applications. The authors acquired the data from repeated chromatic scales produced by a trumpet played at mezzo-forte in an anechoic …


Spectral Broadening Effects On Pulsed-Source Digital Holography, Steven A. Owens, Mark F. Spencer, Glen P. Perram Aug 2023

Spectral Broadening Effects On Pulsed-Source Digital Holography, Steven A. Owens, Mark F. Spencer, Glen P. Perram

Faculty Publications

Using a pulsed configuration, a digital-holographic system is setup in the off-axis image plane recording geometry, and spectral broadening via pseudo-random bit sequence is used to degrade the temporal coherence of the master-oscillator laser. The associated effects on the signal-to-noise ratio are then measured in terms of the ambiguity and coherence efficiencies. It is found that the ambiguity efficiency, which is a function of signal-reference pulse overlap, is not affected by the effects of spectral broadening. The coherence efficiency, on the other hand, is affected. As a result, the coherence efficiency, which is a function of effective fringe visibility, is …


Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri Jun 2023

Adaptive Plasmonic Metasurfaces For Radiative Cooling And Passive Thermoregulation, Azadeh Didari-Bader, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

In this work, we investigate a class of planar photonic structures operating as passive thermoregulators. The radiative cooling process is adjusted through the incorporation of a phase change material (Vanadium Dioxide, VO2) in conjunction with a layer of transparent conductive oxide (Aluminum-doped Zinc Oxide, AZO). VO2 is known to undergo a phase transition from the “dielectric” phase to the “plasmonic” or “metallic” phase at a critical temperature close to 68°C. In addition, AZO shows plasmonic properties at the long-wave infrared spectrum, which, combined with VO2, provides a rich platform to achieve low reflections across the …


Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily May 2023

Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily

AFIT Patents

The present invention relates to evanescently coupling whispering gallery mode optical resonators having a liquid coupling as well as methods of making and using same. The aforementioned evanescently coupling whispering gallery mode optical resonators having a liquid couplings provide increased tunability and sensing selectivity over current same. The aforementioned. Applicants’ method of making evanescent-wave coupled optical resonators can be achieved while having coupling gap dimensions that can be fabricated using standard photolithography. Thus economic, rapid, and mass production of coupled WGM resonators-based lasers, sensors, and signal processors for a broad range of applications can be realized.


Effect On Focusing Fields By Ferromagnetic Cell Cores In Linear Induction Accelerators, Cooper Guillaume May 2023

Effect On Focusing Fields By Ferromagnetic Cell Cores In Linear Induction Accelerators, Cooper Guillaume

Senior Honors Theses

In the Los Alamos National Laboratories DARHT facility, there are two perpendicular linear induction accelerators, LIAs. The LIAs’ solenoids produce magnetic fields which focus the electron beam. Simultaneously, the accelerating pulse creates a magnetic field. These two field intensities act upon a ferromagnetic material in the cells to enhance magnetic flux density. Due to the nonlinearity of the material, this flux density will reach a saturation point. In turn, the magnetic field intensity of the axial solenoidal magnetic field will be affected and slightly altered. The width of the electron beam will increase, causing a decrease in effectiveness. Through simulation, …


Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison Mar 2023

Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison

Engineering Faculty Articles and Research

In modern communications networks, data is transmitted over long distances using optical fibers. At nodes in the network, the data is converted to an electrical signal to be processed, and then converted back into an optical signal to be sent over fiber optics. This process results in higher power consumption and adds to transmission time. However, by processing the data optically, we can begin to alleviate these issues and surpass systems which rely on electronics. One promising approach for this is plasmonic devices. Plasmonic waveguide devices have smaller footprints than silicon photonics for more compact photonic integrated circuits, although they …


Electromagnetic Theory And Applications, Nicholas Madamopoulos, George Kliros Jan 2023

Electromagnetic Theory And Applications, Nicholas Madamopoulos, George Kliros

Open Educational Resources

This book intends to provide both the fundamentals of Electromagnetics but also some practical applications of the concepts covered. Having taught electromagnetics for several years, the authors feel that many times the field of electromagnetics comes as “old” and often times students do not appreciate the concepts and their importance in everyday applications. The authors intend to accompany the EM concepts with life applications. Hence, students may see the direct impact of the knowledge they acquire through the study of the field of electromagnetics and better appreciate the field.


Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd Jan 2023

Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd

Directivity

No abstract provided.


The Effect Of The Width Of The Incident Pulse To The Dielectric Transition Layer In The Scattering Of An Electromagnetic Pulse — A Qubit Lattice Algorithm Simulation, George Vahala, Linda Vahala, Abhay K. Ram, Min Soe Jan 2023

The Effect Of The Width Of The Incident Pulse To The Dielectric Transition Layer In The Scattering Of An Electromagnetic Pulse — A Qubit Lattice Algorithm Simulation, George Vahala, Linda Vahala, Abhay K. Ram, Min Soe

Electrical & Computer Engineering Faculty Publications

The effect of the thickness of the dielectric boundary layer that connects a material of refractive index n1 to another of index n2is considered for the propagation of an electromagnetic pulse. A qubit lattice algorithm (QLA), which consists of a specially chosen non-commuting sequence of collision and streaming operators acting on a basis set of qubits, is theoretically determined that recovers the Maxwell equations to second-order in a small parameter ϵ. For very thin boundary layer the scattering properties of the pulse mimics that found from the Fresnel jump conditions for a plane wave - except that …


Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


Quantum Efficiency And Lifetime Study For Negative Electron Affinity Gaas Nanopillar Array Photocathode, Md Aziz Ar Rahman, Md Abdullah Mamun, Shukui Zhang, Hani E. Elsayed-Ali Jan 2023

Quantum Efficiency And Lifetime Study For Negative Electron Affinity Gaas Nanopillar Array Photocathode, Md Aziz Ar Rahman, Md Abdullah Mamun, Shukui Zhang, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Recent studies showed significant improvement in quantum efficiency (QE) by negative electron affinity (NEA) GaAs nanopillar array (NPA) photocathodes over their flat surface peers, particularly at 500 ─ 800 nm waveband. However, the underlying physics is yet to be well understood for further improvement in its performance. In this report, NEA GaAs NPA photocathodes with different dimensions were studied. The diameter of the nanopillars varied from 200 ─ 360 nm, the height varied from 230 ─ 1000 nm and the periodicity varied from 470 ─ 630 nm. The QE and photocathode lifetime were measured. Mie-resonance enhancement was observed at tunable …