Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

PDF

Old Dominion University

Theses/Dissertations

Electron source

Articles 1 - 2 of 2

Full-Text Articles in Physics

Commissioning & Characterization Of Magnetized Gridded Thermionic Electron Source, Mark Stefani Apr 2021

Commissioning & Characterization Of Magnetized Gridded Thermionic Electron Source, Mark Stefani

Electrical & Computer Engineering Theses & Dissertations

Collaborative efforts to design and fabricate a magnetized gridded thermionic electron source have been conducted between Xelera and Jefferson Lab. Commissioning and characterization of an electron gun fabricated by Xelera was performed to benchmark the viability of future electron source designs and capabilities. The work involved simulation, installation, trouble-shooting, modifications of the design, commissioning, characterization, and magnetization of the electron beam produced. A specially designed cavity as well as novel diagnostic tools and methods were developed, implemented, and experimentally tested. Finally, the gun was used to demonstrate a previously unachieved current of magnetized electron beam from a gridded thermionic source …


Field Emission Based Sensors Using Carbon Nanotubes, Changkun Dong Apr 2003

Field Emission Based Sensors Using Carbon Nanotubes, Changkun Dong

Physics Theses & Dissertations

A number of sensitive applications would be greatly benefited by the development of better cold cathodes that employ the electron field emission process. Among the many kinds of field emitters that could be tried, carbon nanotubes (CNT) have a number of distinct advantages because of their unique geometrical structure, chemical inertness, mechanical stiffness, and high thermal and electrical conductivities. This dissertation describes research in which CNT cathodes were fabricated and their emission characteristics were measured.

Multi-walled carbon nanotubes (MWNT) were grown by chemical vapor deposition (CVD) on various substrates: Ni and Hastelloy gauze, 304 stainless steel (SS) plates, and Ni-coated …