Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

Physics

University of Massachusetts Amherst

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Transitions Between Radial And Bipolar Liquid Crystal Drops In The Presence Of Novel Surfactants, Jake Shechter Dec 2020

Transitions Between Radial And Bipolar Liquid Crystal Drops In The Presence Of Novel Surfactants, Jake Shechter

Doctoral Dissertations

Liquid crystals (LCs) are a class of molecules that form a variety of configurations easily influenced by external interactions. Of particular interest are rod-like LC molecules confined to a spherical geometry, which have a competition between interfacial tension and elastic deformations. The configuration of the liquid crystal inside a droplet can be controlled using surfactants, influencing the boundary conditions, in an oil-in-water emulsion. I tested the effects of novel surfactants on the configuration of the LC droplets. These novel surfactant molecules, synthesized by collaborators, are oligomers with either a variable length hydrophobic domain or protein sensitive hydrophilic domain. I tested …


Geometry, Growth And Pattern Formation In Thin Elastic Structures, Salem Al-Mosleh Oct 2018

Geometry, Growth And Pattern Formation In Thin Elastic Structures, Salem Al-Mosleh

Doctoral Dissertations

Thin shells are abundant in nature and industry, from atomic to planetary scales. The mechanical behavior of a thin shell depends crucially on its geometry and embedding in 3 dimensions (3D). In fact, the behavior of extremely thin shells becomes scale independent and only depends on geometry. That is why the crumpling of graphene will have similarities to the crumpling of paper. In this thesis, we start by discussing the static behavior of thin shells, highlighting the role of asymptotic curves (curves with zero normal curvature) in determining the possible deformations and in controlling the folding patterns. In particular, we …