Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Self-Organized Criticality In Sheared Suspensions, L. Corté, Sharon J. Gerbode, W. Man, D. J. Pine Dec 2009

Self-Organized Criticality In Sheared Suspensions, L. Corté, Sharon J. Gerbode, W. Man, D. J. Pine

All HMC Faculty Publications and Research

Recent studies reveal that suspensions of neutrally buoyant non-Brownian particles driven by slow periodic shear can undergo a dynamical phase transition between a fluctuating irreversible steady state and an absorbing reversible state. Using a computer model, we show that such systems exhibit self-organized criticality when a finite particle sedimentation velocity vs is introduced. Under periodic shear, these systems evolve, without external intervention, towards the shear-dependent critical concentration ϕc as vs is reduced. This state is characterized by power-law distributions in the lifetime and size of fluctuating clusters. Experiments exhibit similar behavior and, as vs is reduced, …


How Much Can Guided Modes Enhance Absorption In Thin Solar Cells?, Peter N. Saeta, Vivian E. Ferry, Domenico Pacifici, Jeremy N. Munday, Harry A. Atwater Nov 2009

How Much Can Guided Modes Enhance Absorption In Thin Solar Cells?, Peter N. Saeta, Vivian E. Ferry, Domenico Pacifici, Jeremy N. Munday, Harry A. Atwater

All HMC Faculty Publications and Research

Absorption enhancement in thin metal-backed solar cells caused by dipole scatterers embedded in the absorbing layer is studied using a semi-analytical approach. The method accounts for changes in the radiation rate produced by layers above and below the dipole, and treats incoherently the subsequent scattering of light in guided modes from other dipoles. We find large absorption enhancements for strongly coupled dipoles, exceeding the ergodic limit in some configurations involving lossless dipoles. An antireflection-coated 100-nm layer of a-Si:H on Ag absorbs up to 87% of incident above-gap light. Thin layers of both strong and weak absorbers show similar strongly enhanced …