Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Magnetism And Topological Hall Effect In Antiferromagnetic Ru2Mnsn-Based Heusler Compounds, Wenyong Zhang, Balamurugan Balasubramanian, Yang Sun, Ahsan Ullah, Ralph Skomski, Rabindra Pahari, Shah R. Valloppilly, Xingzhong Li, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer May 2021

Magnetism And Topological Hall Effect In Antiferromagnetic Ru2Mnsn-Based Heusler Compounds, Wenyong Zhang, Balamurugan Balasubramanian, Yang Sun, Ahsan Ullah, Ralph Skomski, Rabindra Pahari, Shah R. Valloppilly, Xingzhong Li, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Heusler compounds and alloys based on them are of great recent interest because they exhibit a wide variety of spin structures, magnetic properties, and electron-transport phenomena. Their properties are tunable by alloying and we have investigated L21-ordered compound Ru2MnSn and its alloys by varying the atomic Mn:Sn composition. While antiferromagnetic ordering with a Néel temperature of 361 K was observed in Ru2MnSn, the Mn-poor Ru2Mn0.8Sn1.2 alloy exhibits properties of a diluted antiferromagnet in which there are localized regions of uncompensated Mn spins. Furthermore, a noncoplanar spin structure, evident from …


Unconventional Anomalous Hall Effect From Antiferromagnetic Domain Walls Of Nd2Ir2O7 Thin Films, Woo Jin Kim, John H. Gruenewald, Taekoo Oh, Sangmo Cheon, Bongju Kim, Oleksandr B. Korneta, Hwanbeom Cho, Daesu Lee, Yoonkoo Kim, Miyoung Kim, Je-Geun Park, Bohm-Jung Yang, Ambrose Seo Sep 2018

Unconventional Anomalous Hall Effect From Antiferromagnetic Domain Walls Of Nd2Ir2O7 Thin Films, Woo Jin Kim, John H. Gruenewald, Taekoo Oh, Sangmo Cheon, Bongju Kim, Oleksandr B. Korneta, Hwanbeom Cho, Daesu Lee, Yoonkoo Kim, Miyoung Kim, Je-Geun Park, Bohm-Jung Yang, Ambrose Seo

Physics and Astronomy Faculty Publications

Ferroic domain walls (DWs) create different symmetries and ordered states compared with those in single-domain bulk materials. In particular, the DWs of an antiferromagnet with noncoplanar spin structure have a distinct symmetry that cannot be realized in those of their ferromagnet counterparts. In this paper, we show that an unconventional anomalous Hall effect (AHE) can arise from the DWs of a noncoplanar antiferromagnet, Nd2Ir2O7. Bulk Nd2Ir2O7 has a cubic symmetry; thus, its Hall signal should be zero without an applied magnetic field. The DWs generated in this material break …


Observation Of A Pressure-Induced Transition From Interlayer Ferromagnetism To Intralayer Antiferromagnetism In Sr4Ru3O10, H. Zheng, W. H. Song, J. Terzic, H. D. Zhao, Y. F. Ni, Lance E. Delong, P. Schlottmann, G. Cao Aug 2018

Observation Of A Pressure-Induced Transition From Interlayer Ferromagnetism To Intralayer Antiferromagnetism In Sr4Ru3O10, H. Zheng, W. H. Song, J. Terzic, H. D. Zhao, Y. F. Ni, Lance E. Delong, P. Schlottmann, G. Cao

Physics and Astronomy Faculty Publications

Sr4Ru3O10 is a Ruddlesden-Popper compound with triple Ru-O perovskite layers separated by Sr-O rock-salt layers. This compound presents a rare coexistence of interlayer (c-axis) ferromagnetism and intralayer (basal-plane) metamagnetism at ambient pressure. Here we report the observation of pressure-induced, intralayer itinerant antiferromagnetism arising from the interlayer ferromagnetism. The application of modest hydrostatic pressure generates an anisotropy that may cause a flattening and a tilting of RuO6 octahedra. All magnetic and transport results from this study indicate these lattice distortions diminish the c-axis ferromagnetism and basal-plane metamagnetism, and induce a basal-plane antiferromagnetic state. …


Quadrupolar Quantum Criticality On A Fractal, Jonathan D'Emidio, Simon Lovell, Ribhu K. Kaul May 2018

Quadrupolar Quantum Criticality On A Fractal, Jonathan D'Emidio, Simon Lovell, Ribhu K. Kaul

Physics and Astronomy Faculty Publications

We study the ground state ordering of quadrupolar ordered S = 1 magnets as a function of spin dilution probability p on the triangular lattice. In sharp contrast to the ordering of S = 1/2 dipolar Néel magnets on percolating clusters, we find that the quadrupolar magnets are quantum disordered at the percolation threshold, p = p. Further we find that long-range quadrupolar order is present for all p < p and vanishes first exactly at p. Strong evidence for scaling behavior close to p points to an unusual quantum criticality without fine tuning that …


Unsupervised Machine Learning Account Of Magnetic Transitions In The Hubbard Model, Kelvin Ch'ng, Nick Vazquez, Ehsan Khatami Jan 2018

Unsupervised Machine Learning Account Of Magnetic Transitions In The Hubbard Model, Kelvin Ch'ng, Nick Vazquez, Ehsan Khatami

Faculty Publications

We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t-distributed stochastic neighboring ensemble (t-SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and …


Doping Evolution Of Magnetic Order And Magnetic Excitations In (Sr1-XLaX)3Ir2O7, Xingye Lu, D. E. Mcnally, M. Moretti Sala, Jsaminka Terzic, M. H. Upton, D. Casa, G. Ingold, Gang Cao, T. Schmitt Jan 2017

Doping Evolution Of Magnetic Order And Magnetic Excitations In (Sr1-XLaX)3Ir2O7, Xingye Lu, D. E. Mcnally, M. Moretti Sala, Jsaminka Terzic, M. H. Upton, D. Casa, G. Ingold, Gang Cao, T. Schmitt

Physics and Astronomy Faculty Publications

We use resonant elastic and inelastic x-ray scattering at the Ir-L3 edge to study the doping-dependent magnetic order, magnetic excitations, and spin-orbit excitons in the electron-doped bilayer iridate (Sr1−xLax)3Ir2O7 (0 ≤ x ≤ 0.065). With increasing doping x, the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order across the insulator-to-metal transition from x = 0 to 0.05, followed by a transition to two-dimensional short range order between x = 0.05 and 0.065. Because of the interactions between the J …


Simultaneous Metal-Insulator And Antiferromagnetic Transitions In Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals, Hao Zheng, Jsaminka Terzic, Feng Ye, X. G. Wan, D. Wang, Jinchen Wang, Xiaoping Wang, P. Schlottmann, Shujuan Yuan, Gang Cao Jun 2016

Simultaneous Metal-Insulator And Antiferromagnetic Transitions In Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals, Hao Zheng, Jsaminka Terzic, Feng Ye, X. G. Wan, D. Wang, Jinchen Wang, Xiaoping Wang, P. Schlottmann, Shujuan Yuan, Gang Cao

Center for Advanced Materials Faculty Publications

The orthorhombic perovskite SrIrO3 is a semimetal, an intriguing exception in iridates where the strong spin-orbit interaction coupled with electron correlations tends to impose an insulating state. We report results of our investigation of bulk single-crystal Sr0.94Ir0.78O2.68 or Ir-deficient, orthorhombic perovskite SrIrO3. It retains the same crystal structure as stoichiometric SrIrO3 but exhibits a sharp, simultaneous antiferromagnetic (AFM) and metal-insulator (MI) transition occurring in the basal-plane resistivity at 185 K. Above it, the basal-plane resistivity features an extended regime of almost linear temperature dependence up to 800 K but the strong …