Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

Stephen Ducharme Publications

2014

Articles 1 - 5 of 5

Full-Text Articles in Physics

Polarization Imaging In Ferroelectric Polymer Thin Film Capacitors By Pyroelectric Scanning Microscopy, Jingfeng Song, Haidong Lu, Alexei Gruverman, Stephen Ducharme May 2014

Polarization Imaging In Ferroelectric Polymer Thin Film Capacitors By Pyroelectric Scanning Microscopy, Jingfeng Song, Haidong Lu, Alexei Gruverman, Stephen Ducharme

Stephen Ducharme Publications

A Pyroelectric Scanning Microscopy system, which uses laser-induced thermal modulation for mapping the pyroelectric response, has been used to image a bipolar domain pattern in a ferroelectric polymer thin film capacitor. This system has achieved a resolution of 660±28 nm by using a violet laser and high f-number microscope objective to reduce the optical spot size, and by operating at high modulation frequencies to reduce the thermal diffusion length. The results agree well with a thermal model implemented numerically using finite element analysis.


Ferroelectricity At The Nanoscale, Vladimir M. Fridkin, Stephen Ducharme Jan 2014

Ferroelectricity At The Nanoscale, Vladimir M. Fridkin, Stephen Ducharme

Stephen Ducharme Publications

The properties of ferroelectrics at the nanoscale are reviewed. The term nanoscale is here related to the ferroelectric film thickness (which is by an order of magnitude the size of the critical domain nucleus). The three aspects considered are ferroelectric switching, the scaling of the coercive field, and the bulk photovoltaic effect. While ferroelectricity at the nanoscale has a twenty-year history of study, it is only in the last few years that perovskite ferroelectric films have become a focus of interest.


The Ferroelectricity At The Nanoscale, Vladimir M. Fridkin, Stephen Ducharme Jan 2014

The Ferroelectricity At The Nanoscale, Vladimir M. Fridkin, Stephen Ducharme

Stephen Ducharme Publications

The review of ferroelectric properties at the nanoscale is presented. Determining the nanoscale, authors bear in mind the film thickness equal by the order of value to the size of critical domain nucleus. Three phenomena are considered: ferroelectric switching, scaling of coercive field and bulk photovoltaic effect. The investigation of ferroelectricity at the nanoscale started 20 years ago. The nanoscaled ferroelectricics with perovskite structure came to be considered only the last few years.


Laboratory Manual For Physics Of Lasers And Modern Optics, 13th Ed, Stephen Ducharme Jan 2014

Laboratory Manual For Physics Of Lasers And Modern Optics, 13th Ed, Stephen Ducharme

Stephen Ducharme Publications

You will encounter challenging puzzles and explore new and exciting physical phenomena. You will be provided with sufficient tools, guidance and other resources, but what you learn depends on your inquisitiveness and creativity. This laboratory course is designed to serve two purposes: 1) To explore a variety of physical principles using the fascinating and diverse behavior of light. 2) To learn some of the principles behind the pervasive and expanding area of optical and laser technology. This course is suitable for students of science, life sciences, and engineering, or any student who is curious about light. The prerequisites are the …


Coplanar Switching Of Polarization In Thin Films Of Vinylidene Fluoride Oligomers, Pankaj Sharma, Alexandra Fursina, Shashi Poddar, Stephen Ducharme, Alexei Gruverman Jan 2014

Coplanar Switching Of Polarization In Thin Films Of Vinylidene Fluoride Oligomers, Pankaj Sharma, Alexandra Fursina, Shashi Poddar, Stephen Ducharme, Alexei Gruverman

Stephen Ducharme Publications

Switching characteristics of vinylidene fluoride oligomer thin films with molecular chains aligned normal to the substrate and exhibiting a preferential in-plane polarization have been investigated using coplanar geometry of inter-digital electrodes via high-resolution piezoresponse force microscopy. It has been shown that in-plane switching proceeds via non-180 rotation of dipoles mediated by non-stochastic nucleation, expansion, and coalescence of domains. Asgrown multidomain configuration is found to be strongly pinned aided by charged domain walls, and the electrically induced (in-plane) mono-domain states relax to the as-grown state. The observed coercive field (approximately 0.6 MV/m) is two to three orders of magnitude smaller than …