Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

Evgeny Tsymbal Publications

Series

BaTiO3

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Electrically Reversible Magnetization At The Antiperovskite/Perovskite Interface, Ding-Fu Shao, Gautam Gurung, Tula R. Paudel, Evgeny Y. Tsymbal Feb 2019

Electrically Reversible Magnetization At The Antiperovskite/Perovskite Interface, Ding-Fu Shao, Gautam Gurung, Tula R. Paudel, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Using density-functional calculations, we predict the emergence of electrically reversible magnetization at the interface between antiferromagnetic noncollinear antiperovskite GaNMn3 and ferroelectric perovskite BaTiO3. We find that Mn magnetic moments are enhanced and reoriented at the GaNMn3/ATiO3 (001) (A = Sr and Ba) interface, resulting in a sizable net magnetization along the [110] direction. This magnetization is reversed with ferroelectric polarization of BaTiO3 through ∼20◦ rotation of the noncollinear magnetic moments. The effect is driven by ferroelectric modulation of the antiferromagnetic exchange coupling between the interfacial Mn atoms mediated by the Mn-3d orbital population. Our results open opportunities for controlling the …


Ferroelectric Instability Under Screened Coulomb Interactions, Yong Wang, Xiaohui Liu, John D. Burton, Sitaram S. Jaswal, Evgeny Y. Tsymbal Dec 2012

Ferroelectric Instability Under Screened Coulomb Interactions, Yong Wang, Xiaohui Liu, John D. Burton, Sitaram S. Jaswal, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

We explore the effect of charge carrier doping on ferroelectricity using density functional calculations and phenomenological modeling. By considering a prototypical ferroelectric material, BaTiO3, we demonstrate that ferroelectric displacements are sustained up to the critical concentration of 0.11 electron per unit cell volume. This result is consistent with experimental observations and reveals that the ferroelectric phase and conductivity can coexist. Our investigations show that the ferroelectric instability requires only a short-range portion of the Coulomb force with an interaction range of the order of the lattice constant. These results provide a new insight into the origin of ferroelectricity …