Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Ferroelectric Tunnel Junctions With Graphene Electrodes, Haidong Lu, Alexey Lipatov, Sangjin Ryu, D. J. Kim, H. Lee, M. Ye. Zhuravlev, Chang-Beom Eom, Evgeny Y. Tsymbal, Alexander Sinitskii, Alexei Gruverman Nov 2014

Ferroelectric Tunnel Junctions With Graphene Electrodes, Haidong Lu, Alexey Lipatov, Sangjin Ryu, D. J. Kim, H. Lee, M. Ye. Zhuravlev, Chang-Beom Eom, Evgeny Y. Tsymbal, Alexander Sinitskii, Alexei Gruverman

Evgeny Tsymbal Publications

Polarization-driven resistive switching in ferroelectric tunnel junctions (FTJs)—structures composed of two electrodes separated by an ultrathin ferroelectric barrier—offers new physics and materials functionalities, as well as exciting opportunities for the next generation of non-volatile memories and logic devices. Performance of FTJs is highly sensitive to the electrical boundary conditions, which can be controlled by electrode material and/or interface engineering. Here, we demonstrate the use of graphene as electrodes in FTJs that allows control of interface properties for significant enhancement of device performance. Ferroelectric polarization stability and resistive switching are strongly affected by a molecular layer at the graphene/BaTiO3 interface. …


Complex Band Structure Of Topologically Protected Edge States, Xiaoqian Dang, John D. Burton, Alan Kalitsov, Julian P. Velev, Evgeny Y. Tsymbal Oct 2014

Complex Band Structure Of Topologically Protected Edge States, Xiaoqian Dang, John D. Burton, Alan Kalitsov, Julian P. Velev, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

One of the great successes of modern condensed matter physics is the discovery of topological insulators (TIs). A thorough investigation of their properties could bring such materials from fundamental research to potential applications. Here, we report on theoretical investigations of the complex band structure (CBS) of two-dimensional (2D) TIs. We utilize the tight-binding form of the Bernevig, Hughes, and Zhang model as a prototype for a generic 2D TI. Based on this model, we outline the conditions that the CBS must satisfy in order to guarantee the presence of topologically protected edge states. Furthermore, we use the Green’s function technique …


Emergent Vortices At A Ferromagnetic Superconducting Oxide Interface, Alexander Paul Petrović, A. Paré, Tula R. Paudel, K. Lee, S. Holmes, Crispin H.W. Barnes, A. David, T. Wu, Evgeny Y. Tsymbal, C. Panagopoulos Sep 2014

Emergent Vortices At A Ferromagnetic Superconducting Oxide Interface, Alexander Paul Petrović, A. Paré, Tula R. Paudel, K. Lee, S. Holmes, Crispin H.W. Barnes, A. David, T. Wu, Evgeny Y. Tsymbal, C. Panagopoulos

Evgeny Tsymbal Publications

Understanding the cohabitation arrangements of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface remains an open challenge. Probing this coexistence with sub-Kelvin magnetotransport experiments, we demonstrate that a hysteretic in-plane magnetoresistance develops below the superconducting transition for H < 0.15 T, independently of the carrier density or oxygen annealing. This hysteresis is argued to arise from vortex depinning within a thin (< 20 nm) superconducting layer, mediated by discrete ferromagnetic dipoles located solely above the layer. The pinning strength may be modified by varying the superconducting channel thickness via electric field-effect doping. No evidence is found for bulk magnetism or finite-momentum pairing, and we conclude that ferromagnetism is strictly confined to the interface, where it competes with superconductivity. Our work indicates that oxide interfaces are ideal candidate materials for the growth and analysis of nanoscale superconductor/ferromagnet hybrids.


Chemically Induced Jahn–Teller Ordering On Manganite Surfaces, Zheng Gai, Wenzhi Lin, John D. Burton, K. Fuchigami, Paul C. Snijders, T. Z. Ward, Evgeny Y. Tsymbal, J. Shen, Stephen Jesse, Sergei V. Kalinin, Arthur P. Baddorf Jul 2014

Chemically Induced Jahn–Teller Ordering On Manganite Surfaces, Zheng Gai, Wenzhi Lin, John D. Burton, K. Fuchigami, Paul C. Snijders, T. Z. Ward, Evgeny Y. Tsymbal, J. Shen, Stephen Jesse, Sergei V. Kalinin, Arthur P. Baddorf

Evgeny Tsymbal Publications

Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields and establish their coupling to electronic properties. Here we demonstrate that measuring the sub-30-pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunnelling microscopy allows the physical order parameter fields to be visualized in real space on the single-atom level. Here, this local crystallographic analysis is applied to the in-situ-grown manganite surfaces. …


Long-Range Electronic Reconstruction To A Dxz,Yz-Dominated Fermi Surface Below The Laalo3/Srtio3 Interface, Alexander Paul Petrović, A. Pare, Tula R. Paudel, K. Lee, S. Holmes, Crispin H.W. Barnes, A. David, T. Wu, Evgeny Y. Tsymbal, C. Panagopoulos Jun 2014

Long-Range Electronic Reconstruction To A Dxz,Yz-Dominated Fermi Surface Below The Laalo3/Srtio3 Interface, Alexander Paul Petrović, A. Pare, Tula R. Paudel, K. Lee, S. Holmes, Crispin H.W. Barnes, A. David, T. Wu, Evgeny Y. Tsymbal, C. Panagopoulos

Evgeny Tsymbal Publications

Low dimensionality, broken symmetry and easily-modulated carrier concentrations provoke novel electronic phase emergence at oxide interfaces. However, the spatial extent of such reconstructions - i.e. the interfacial ‘‘depth’’ - remains unclear. Examining LaAlO3/SrTiO3 heterostructures at previously unexplored carrier densities n2D 14 cm-2 , we observe a Shubnikov-de Haas effect for small in-plane fields, characteristic of an anisotropic 3D Fermi surface with preferential dxz,yz orbital occupancy extending over at least 100 nm perpendicular to the interface. Quantum oscillations from the 3D Fermi surface of bulk doped SrTiO3 emerge simultaneously at higher n2D. …