Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Transitions Between Radial And Bipolar Liquid Crystal Drops In The Presence Of Novel Surfactants, Jake Shechter Dec 2020

Transitions Between Radial And Bipolar Liquid Crystal Drops In The Presence Of Novel Surfactants, Jake Shechter

Doctoral Dissertations

Liquid crystals (LCs) are a class of molecules that form a variety of configurations easily influenced by external interactions. Of particular interest are rod-like LC molecules confined to a spherical geometry, which have a competition between interfacial tension and elastic deformations. The configuration of the liquid crystal inside a droplet can be controlled using surfactants, influencing the boundary conditions, in an oil-in-water emulsion. I tested the effects of novel surfactants on the configuration of the LC droplets. These novel surfactant molecules, synthesized by collaborators, are oligomers with either a variable length hydrophobic domain or protein sensitive hydrophilic domain. I tested …


Exploring Structural And Electronic Properties Of Triangular Adatom Layers On The Silicon Surface Through Adsorbate Doping, Tyler S. Smith Aug 2020

Exploring Structural And Electronic Properties Of Triangular Adatom Layers On The Silicon Surface Through Adsorbate Doping, Tyler S. Smith

Doctoral Dissertations

The analysis of the electronic structure and morphology of 1/3 monolayers (ML) of Sn or Pb on Si(111) and Ge(111) has played an important role in understanding the role of electronic correlations in two dimensions. Specifically, the two-dimensional lattice of partially filled dangling bonds of these so-called α-phases has been an important testbed for studying structural phase transitions and correlated electronic phenomena ever since the discovery of a surface charge density wave in the Pb/Ge(111) system more than two decades ago. With the exception of the novel Sn/Si(111) system, all $\alpha$-phases undergo a charge ordering transition at low temperature. The …


Numerical Studies Of Multi-Orbital Hubbard Models, Nitin Kaushal Aug 2020

Numerical Studies Of Multi-Orbital Hubbard Models, Nitin Kaushal

Doctoral Dissertations

This thesis examines the emergence of exotic phases in multi-orbital Hubbard models due to competition between Coulomb interaction, spin-orbit coupling and kinetic energy. Exact diagonalization and numerically accurate density matrix renormalization group methods are used to study small clusters and one dimensional chains. Two dimensional lattices are solved using unrestricted real-space Hartree-Fock approximation. Novel excitonic insulators, due to condensation of spin-orbit excitons, are found in the spin-orbit coupling vs Coulomb interation phase diagrams of (t2g)n systems for n = 4 and 3.5. Moreover, the presence of a BCS-BEC crossover in the (t2g)4 excitonic insulator is …


Theoretical Modeling Of Metallic Compounds With Versatile Properties By Combining First-Principles Calculations And Global Structure Prediction Algorithms, Jinseon Park Aug 2020

Theoretical Modeling Of Metallic Compounds With Versatile Properties By Combining First-Principles Calculations And Global Structure Prediction Algorithms, Jinseon Park

Doctoral Dissertations

Improving the target properties of existing materials or finding new materials with enhanced functionality for practical applications is at the heart of the materials research. In this respect, the first-principles approaches, which have been successfully integrated into modern high- performance computers, have become an indispensable part of the materials research, providing a better understanding of existing materials and guidance on the design of new materials. Using state-of-the-art computational/theoretical approaches that couple global structure prediction with ab initio density functional theory calculations, we investigate structural and electronic properties of CsxO [cesium oxides], Li1+xMn2O4 [lithium …


Kinetics Of The Crystal-Melt Phase Transformation In Semicrystalline Polymers, Kiran Subramaniam Iyer Jul 2020

Kinetics Of The Crystal-Melt Phase Transformation In Semicrystalline Polymers, Kiran Subramaniam Iyer

Doctoral Dissertations

The assembly of long-chain polymers into an ordered state is a process that has puzzled polymer scientists for several decades. A process that is largely controlled by the strength of intermolecular attractions in small molecular systems, this crystallization in the case of polymers is controlled by a competition between the aforementioned force of attraction between monomers and the formidable conformational entropy of polymer chains. Any factor that affects this conformational entropy, whether that is an equilibrium thermodynamic factor or a kinetic factor, has the ability to control polymer crystallization. In this thesis, we focus on understanding the underlying kinetic processes …