Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

University of Nebraska - Lincoln

Ferroelectricity

Articles 1 - 7 of 7

Full-Text Articles in Physics

Ordered Growth Of Ferroelectric Diisopropylammonium-Bromide Microcrystals Through Slotted-Jar Growth And Lithographically Controlled Wetting, Andrew J. Fanning Mar 2019

Ordered Growth Of Ferroelectric Diisopropylammonium-Bromide Microcrystals Through Slotted-Jar Growth And Lithographically Controlled Wetting, Andrew J. Fanning

Honors Theses

Organic molecular ferroelectrics show promise for industry applications because of their switchable high spontaneous polarization value, mechanical flexibility, and cost-effectiveness. Since these materials, namely diisopropylammonium bromide, exhibit ferroelectricity only in tandem with a high level of crystallinity, novel methods must be explored in order to ensure that high levels of crystallinity are achieved. This project seeked to perfect the methods of Slotted Jar Growth and Lithographically Controlled Wetting (LCW). Slotted Jar Growth uses temperature driven solution saturation to grow crystals on a desired substrate. LCW drives the growth of microscopic diisopropylammonium bromide crystals, in their ferroelectric phase, through the use …


Direct Observation Of Room-Temperature Out-Of-Plane Ferroelectricity And Tunneling Electroresistance At The Two-Dimensional Limit, H. Wang, Z R. Liu, H. Y. Yoong, Tula R. Paudel, J. X. Xia, R. Guo, W. N. Lin, P. Yang, J. Wang, G. M. Chow, T. Venkatesan, Evgeny Y. Tsymbal, H. Tian, J. S. Chen Aug 2018

Direct Observation Of Room-Temperature Out-Of-Plane Ferroelectricity And Tunneling Electroresistance At The Two-Dimensional Limit, H. Wang, Z R. Liu, H. Y. Yoong, Tula R. Paudel, J. X. Xia, R. Guo, W. N. Lin, P. Yang, J. Wang, G. M. Chow, T. Venkatesan, Evgeny Y. Tsymbal, H. Tian, J. S. Chen

Evgeny Tsymbal Publications

Out-of-plane ferroelectricity with a high transition temperature in nanometer-scale films is required to miniaturize electronic devices. Direct visualization of stable ferroelectric polarization and its switching behavior in atomically thick films is critical for achieving this goal. Here, ferroelectric order at room temperature in the two-dimensional limit is demonstrated in tetragonal BiFeO3 ultrathin films. Using aberration-corrected scanning transmission electron microscopy, we directly observed robust out-of-plane spontaneous polarization in one-unitcell-thick BiFeO3 films. High-resolution piezoresponse force microscopy measurements show that the polarization is stable and switchable, whereas a tunneling electroresistance effect of up to 370% is achieved in BiFeO3 films. …


The Promise Of Piezoelectric Polymers, Timothy D. Usher, Kimberley R. Cousins, Renwu Zhang, Stephen Ducharme Jan 2018

The Promise Of Piezoelectric Polymers, Timothy D. Usher, Kimberley R. Cousins, Renwu Zhang, Stephen Ducharme

Stephen Ducharme Publications

Recent advances provide new opportunities in the field of polymer piezoelectric materials. Piezoelectric materials provide unique insights to the fundamental understanding of the solid state. In addition, piezoelectric materials have a wide range of applications, representing billions of dollars of commercial applications. However, inorganic piezoelectric materials have limitations that polymer ferroelectric materials can overcome, if certain challenges can be addressed. This mini-review is a practical summary of the current research and future directions in the investigation and application of piezoelectric materials with an emphasis on polymeric piezoelectric materials. We will assume that the reader is well versed in the subject …


A Brief Review Of Ferroelectric Control Of Magnetoresistance In Organic Spin Valves, Xiaoshan Xu Jan 2018

A Brief Review Of Ferroelectric Control Of Magnetoresistance In Organic Spin Valves, Xiaoshan Xu

Xiaoshan Xu Papers

Magnetoelectric coupling has been a trending research topic in both organic and inorganic materials and hybrids. The concept of controlling magnetism using an electric field is particularly appealing in energy efficient applications. In this spirit, ferroelectricity has been introduced to organic spin valves to manipulate the magneto transport, where the spin transport through the ferromagnet/organic spacer interfaces (spinterface) are under intensive study. The ferroelectric materials in the organic spin valves provide a knob to vary the interfacial energy alignment and the interfacial crystal structures, both are critical for the spin transport. In this review, we introduce the recent efforts of …


Fabrication Of Diisopropylammonium Bromide Aligned Microcrystals With In-Plane Uniaxial Polarization, Shashi Poddar, Haidong Lu, Jingfeng Song, Om Goit, Shah Valloppilly, Alexei Gruverman, Stephen Ducharme Jan 2016

Fabrication Of Diisopropylammonium Bromide Aligned Microcrystals With In-Plane Uniaxial Polarization, Shashi Poddar, Haidong Lu, Jingfeng Song, Om Goit, Shah Valloppilly, Alexei Gruverman, Stephen Ducharme

Stephen Ducharme Publications

Textured arrays of ferroelectric microcrystals of diisopropylammonium bromide were grown from solution at room temperature onto silicon substrates and studied by means of x-ray diffraction, atomic force microscopy, electron microscopy, and piezoresponse force microscopy. The needle-shaped crystals had dimensions of approximately 50 μm × 5 μm in the plane and were approximately 200 nm thick, where the dimensions and arrangement were influenced by growth conditions. The observations suggest an Ostwald ripening mechanism of the microcrystal growth. The crystals had the structure of the ferroelectric phase, where the polarization axis was in-plane and parallel to the long axis of …


Hexagonal Rare-Earth Manganites As Promising Photovoltaics And Light Polarizers, Xin Huang, Tula R. Paudel, Shuai Dong, Evgeny Y. Tsymbal Dec 2015

Hexagonal Rare-Earth Manganites As Promising Photovoltaics And Light Polarizers, Xin Huang, Tula R. Paudel, Shuai Dong, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Ferroelectric materials possess a spontaneous electric polarization and may be utilized in various technological applications ranging from nonvolatile memories to solar cells and light polarizers. Recently, hexagonal rareearth manganites, h-RMnO3 (R is a rare-earth ion), have attracted considerable interest due to their intricate multiferroic properties and improper ferroelectricity characterized by a sizable remnant polarization and high Curie temperature. Here we demonstrate that these compounds can serve as very efficient photovoltaic materials and, in addition, possess remarkable optical anisotropy properties. Using first-principles methods based on density functional theory and considering h-TbMnO3 as a representative …


The Ferroelectricity At The Nanoscale, Vladimir M. Fridkin, Stephen Ducharme Jan 2014

The Ferroelectricity At The Nanoscale, Vladimir M. Fridkin, Stephen Ducharme

Stephen Ducharme Publications

The review of ferroelectric properties at the nanoscale is presented. Determining the nanoscale, authors bear in mind the film thickness equal by the order of value to the size of critical domain nucleus. Three phenomena are considered: ferroelectric switching, scaling of coercive field and bulk photovoltaic effect. The investigation of ferroelectricity at the nanoscale started 20 years ago. The nanoscaled ferroelectricics with perovskite structure came to be considered only the last few years.