Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

University of Louisville

Diamond anvil cell

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Intercalation And High-Pressure Investigations Of Black Arsenic Phosphorus: Unraveling Material Transformations., Dinushika Vithanage Aug 2023

Intercalation And High-Pressure Investigations Of Black Arsenic Phosphorus: Unraveling Material Transformations., Dinushika Vithanage

Electronic Theses and Dissertations

Black arsenic phosphorus (b-AsyP1-y) alloys have emerged as intriguing materials within the realm of two-dimensional (2D) materials, following the discovery of black phosphorus (BP). These alloys possess capability to overcome major limitations of BP and exhibit potential for tunability and enhancement of properties making them promising materials for a wide range of applications, including lithium-ion batteries. Inspired by the intriguing findings obtained for BP, this research focuses on understanding the structural modifications that can be achieved in b-AsyP1-y alloys through the application of intercalation and high pressure. The initial phase of our investigation …


Intercalation And High Pressure Studies Of Black Phosphorous - Pathways To Novel Materials And Physics., Manthila Chathurange Rajapakse Aug 2021

Intercalation And High Pressure Studies Of Black Phosphorous - Pathways To Novel Materials And Physics., Manthila Chathurange Rajapakse

Electronic Theses and Dissertations

Discovery of graphene in 2004 initiated a new trend of materials known as two-dimensional (2D) materials which have exciting surface properties and anisotropies than their bulk counterparts. Phosphorene, which is the layered version of black phosphorous (BP) is one of the top 2D materials in terms of research interests and applications of the present day. Moving a step further, our interest is to understand the possibilities for structural modifications of phosphorene, by means of stimuli such as intercalation and high-pressure. It has been predicted by theoretical studies that these stimuli may lead to the formation of new structures and phases …