Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

University of Louisville

Black phosphorous

Articles 1 - 2 of 2

Full-Text Articles in Physics

First Principle Studies Of The Effects Of Alkali-Metal Intercalation On Structural Transition From Black To Blue Phosphorene And The Adsorption Of N2h4 On Ws2 Layers., Md Rajib Khan Musa Dec 2021

First Principle Studies Of The Effects Of Alkali-Metal Intercalation On Structural Transition From Black To Blue Phosphorene And The Adsorption Of N2h4 On Ws2 Layers., Md Rajib Khan Musa

Electronic Theses and Dissertations

A comprehensive density functional theory calculation has been conducted to seek a potential structural transition from black to blue phosphorene layers, with a focus on the roles played by alkali-metal intercalation in black phosphorene/phosphorus. This study reveals that at sufficiently high Li concentration and specific, well-defined configurations, a phase transition from black to blue phosphorene can take place. The Li atoms intercalated in black phosphorene could act as a “catalyst” in the“reactive region” of the lone pair of P atoms, leading to a P-P bond breaking and, subsequently, a local structural transformation from an orthorhombic lattice to an assembly of …


Intercalation And High Pressure Studies Of Black Phosphorous - Pathways To Novel Materials And Physics., Manthila Chathurange Rajapakse Aug 2021

Intercalation And High Pressure Studies Of Black Phosphorous - Pathways To Novel Materials And Physics., Manthila Chathurange Rajapakse

Electronic Theses and Dissertations

Discovery of graphene in 2004 initiated a new trend of materials known as two-dimensional (2D) materials which have exciting surface properties and anisotropies than their bulk counterparts. Phosphorene, which is the layered version of black phosphorous (BP) is one of the top 2D materials in terms of research interests and applications of the present day. Moving a step further, our interest is to understand the possibilities for structural modifications of phosphorene, by means of stimuli such as intercalation and high-pressure. It has been predicted by theoretical studies that these stimuli may lead to the formation of new structures and phases …