Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

University of Kentucky

Series

Resonant inelastic x-ray scattering

Articles 1 - 3 of 3

Full-Text Articles in Physics

Doping Evolution Of Magnetic Order And Magnetic Excitations In (Sr1-XLaX)3Ir2O7, Xingye Lu, D. E. Mcnally, M. Moretti Sala, Jsaminka Terzic, M. H. Upton, D. Casa, G. Ingold, Gang Cao, T. Schmitt Jan 2017

Doping Evolution Of Magnetic Order And Magnetic Excitations In (Sr1-XLaX)3Ir2O7, Xingye Lu, D. E. Mcnally, M. Moretti Sala, Jsaminka Terzic, M. H. Upton, D. Casa, G. Ingold, Gang Cao, T. Schmitt

Physics and Astronomy Faculty Publications

We use resonant elastic and inelastic x-ray scattering at the Ir-L3 edge to study the doping-dependent magnetic order, magnetic excitations, and spin-orbit excitons in the electron-doped bilayer iridate (Sr1−xLax)3Ir2O7 (0 ≤ x ≤ 0.065). With increasing doping x, the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order across the insulator-to-metal transition from x = 0 to 0.05, followed by a transition to two-dimensional short range order between x = 0.05 and 0.065. Because of the interactions between the J …


Anisotropic Softening Of Magnetic Excitations In Lightly Electron-Doped Sr2Iro4, X. Liu, M. P. M. Dean, Z. Y. Meng, M. H. Upton, T. Qi, T. Gog, Y. Cao, J. Q. Lin, D. Meyers, H. Ding, Gang Cao, J. P. Hill Jun 2016

Anisotropic Softening Of Magnetic Excitations In Lightly Electron-Doped Sr2Iro4, X. Liu, M. P. M. Dean, Z. Y. Meng, M. H. Upton, T. Qi, T. Gog, Y. Cao, J. Q. Lin, D. Meyers, H. Ding, Gang Cao, J. P. Hill

Center for Advanced Materials Faculty Publications

The magnetic excitations in electron-doped (Sr1−xLax)2IrO4 with x = 0.03 were measured using resonant inelastic x-ray scattering at the Ir L3 edge. Although much broadened, well defined dispersive magnetic excitations were observed. Comparing with the magnetic dispersion from the undoped compound, the evolution of the magnetic excitations upon doping is highly anisotropic. Along the antinodal direction, the dispersion is almost intact. On the other hand, the magnetic excitations along the nodal direction show significant softening. These results establish the presence of strong magnetic correlations in electron-doped (Sr1−xLax …


Pressure-Induced Confined Metal From The Mott Insulator Sr3Ir2O7, Yang Ding, Liuxiang Yang, Cheng-Chien Chen, Heung-Sik Kim, Myung Joon Han, Wei Luo, Zhenxing Feng, Mary Upton, Diego Casa, Jungho Kim, Thomas Gog, Zhidan Zeng, Gang Cao, Ho-Kwang Mao, Michel Van Veenendaal May 2016

Pressure-Induced Confined Metal From The Mott Insulator Sr3Ir2O7, Yang Ding, Liuxiang Yang, Cheng-Chien Chen, Heung-Sik Kim, Myung Joon Han, Wei Luo, Zhenxing Feng, Mary Upton, Diego Casa, Jungho Kim, Thomas Gog, Zhidan Zeng, Gang Cao, Ho-Kwang Mao, Michel Van Veenendaal

Physics and Astronomy Faculty Publications

The spin-orbit Mott insulator Sr3Ir2O7 provides a fascinating playground to explore insulator-metal transition driven by intertwined charge, spin, and lattice degrees of freedom. Here, we report high-pressure electric resistance and resonant inelastic x-ray scattering measurements on single-crystal Sr3Ir2O7 up to 63–65 GPa at 300 K. The material becomes a confined metal at 59.5 GPa, showing metallicity in the ab plane but an insulating behavior along the c axis. Such an unusual phenomenon resembles the strange metal phase in cuprate superconductors. Since there is no sign of the collapse of spin-orbit …