Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

University of Kentucky

Series

Quantum Hall effect

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physics

Spin Mode Switching At The Edge Of A Quantum Hall System, Udit Khanna, Ganpathy Murthy, Sumathi Rao, Yuval Gefen Nov 2017

Spin Mode Switching At The Edge Of A Quantum Hall System, Udit Khanna, Ganpathy Murthy, Sumathi Rao, Yuval Gefen

Physics and Astronomy Faculty Publications

Quantum Hall states can be characterized by their chiral edge modes. Upon softening the edge potential, the edge has long been known to undergo spontaneous reconstruction driven by charging effects. In this Letter we demonstrate a qualitatively distinct phenomenon driven by exchange effects, in which the ordering of the edge modes at ν = 3 switches abruptly as the edge potential is made softer, while the ordering in the bulk remains intact. We demonstrate that this phenomenon is robust, and has many verifiable experimental signatures in transport.


Skyrmions And Hall Transport, Bom Soo Kim, Alfred D. Shapere Sep 2016

Skyrmions And Hall Transport, Bom Soo Kim, Alfred D. Shapere

Physics and Astronomy Faculty Publications

We derive a generalized set of Ward identities that captures the effects of topological charge on Hall transport. The Ward identities follow from the (2+1)-dimensional momentum algebra, which includes a central extension proportional to the topological charge density. In the presence of topological objects like Skyrmions, we observe that the central term leads to a direct relation between the thermal Hall conductivity and the topological charge density. We extend this relation to incorporate the effects of a magnetic field and an electric current. The topological charge density produces a distinct signature in the electric Hall conductivity, which is identified in …


Emergence Of Helical Edge Conduction In Graphene At The Ν = 0 Quantum Hall State, Pavel Tikhonov, Efrat Shimshoni, H. A. Fertig, Ganpathy Murthy Mar 2016

Emergence Of Helical Edge Conduction In Graphene At The Ν = 0 Quantum Hall State, Pavel Tikhonov, Efrat Shimshoni, H. A. Fertig, Ganpathy Murthy

Physics and Astronomy Faculty Publications

The conductance of graphene subject to a strong, tilted magnetic field exhibits a dramatic change from insulating to conducting behavior with tilt angle, regarded as evidence for the transition from a canted antiferromagnetic (CAF) to a ferromagnetic (FM) ν = 0 quantum Hall state. We develop a theory for the electric transport in this system based on the spin-charge connection, whereby the evolution in the nature of collective spin excitations is reflected in the charge-carrying modes. To this end, we derive an effective field-theoretical description of the low-energy excitations, associated with quantum fluctuations of the spin-valley domain-wall ground-state configuration which …


Collective Bulk And Edge Modes Through The Quantum Phase Transition In Graphene At Ν = 0, Ganpathy Murthy, Efrat Shimshoni, H. A. Fertig Jan 2016

Collective Bulk And Edge Modes Through The Quantum Phase Transition In Graphene At Ν = 0, Ganpathy Murthy, Efrat Shimshoni, H. A. Fertig

Physics and Astronomy Faculty Publications

Undoped graphene in a strong, tilted magnetic field exhibits a radical change in conduction upon changing the tilt angle, which can be attributed to a quantum phase transition from a canted antiferromagnetic (CAF) to a ferromagnetic (FM) bulk state at filling factor ν = 0. This behavior signifies a change in the nature of the collective ground state and excitations across the transition. Using the time-dependent Hartree-Fock approximation, we study the collective neutral (particle-hole) excitations in the two phases, both in the bulk and on the edge of the system. The CAF has gapless neutral modes in the bulk, whereas …