Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Observation Of A Pressure-Induced Transition From Interlayer Ferromagnetism To Intralayer Antiferromagnetism In Sr4Ru3O10, H. Zheng, W. H. Song, J. Terzic, H. D. Zhao, Y. F. Ni, Lance E. Delong, P. Schlottmann, G. Cao Aug 2018

Observation Of A Pressure-Induced Transition From Interlayer Ferromagnetism To Intralayer Antiferromagnetism In Sr4Ru3O10, H. Zheng, W. H. Song, J. Terzic, H. D. Zhao, Y. F. Ni, Lance E. Delong, P. Schlottmann, G. Cao

Physics and Astronomy Faculty Publications

Sr4Ru3O10 is a Ruddlesden-Popper compound with triple Ru-O perovskite layers separated by Sr-O rock-salt layers. This compound presents a rare coexistence of interlayer (c-axis) ferromagnetism and intralayer (basal-plane) metamagnetism at ambient pressure. Here we report the observation of pressure-induced, intralayer itinerant antiferromagnetism arising from the interlayer ferromagnetism. The application of modest hydrostatic pressure generates an anisotropy that may cause a flattening and a tilting of RuO6 octahedra. All magnetic and transport results from this study indicate these lattice distortions diminish the c-axis ferromagnetism and basal-plane metamagnetism, and induce a basal-plane antiferromagnetic state. …


Ambipolar Ferromagnetism By Electrostatic Doping Of A Manganite, L. M. Zheng, X. Renshaw Wang, W. M. Lü, C. J. Li, Tula R. Paudel, Z. Q. Liu, Z. Huang, S. W. Zeng, Kun Han, Z. H. Chen, X. P. Qiu, M. S. Li, Shize Yang, B. Yang, Matthew F. Chisholm, L. W. Martin, S. J. Pennycook, Evgeny Y. Tsymbal, J. M. D. Coey, W. W. Cao May 2018

Ambipolar Ferromagnetism By Electrostatic Doping Of A Manganite, L. M. Zheng, X. Renshaw Wang, W. M. Lü, C. J. Li, Tula R. Paudel, Z. Q. Liu, Z. Huang, S. W. Zeng, Kun Han, Z. H. Chen, X. P. Qiu, M. S. Li, Shize Yang, B. Yang, Matthew F. Chisholm, L. W. Martin, S. J. Pennycook, Evgeny Y. Tsymbal, J. M. D. Coey, W. W. Cao

Evgeny Tsymbal Publications

Complex-oxide materials exhibit physical properties that involve the interplay of charge and spin degrees of freedom. However, an ambipolar oxide that is able to exhibit both electron-doped and hole-doped ferromagnetism in the same material has proved elusive. Here we report ambipolar ferromagnetism in LaMnO3, with electron–hole asymmetry of the ferromagnetic order. Starting from an undoped atomically thin LaMnO3 film, we electrostatically dope the material with electrons or holes according to the polarity of a voltage applied across an ionic liquid gate. Magnetotransport characterization reveals that an increase of either electron-doping or hole-doping induced ferromagnetic order in this …


Magnetic Phases Of Large-Spin Ultracold Bosons: Quantum Dimer Models And Spin Liquid Phases, Todd C. Rutkowski Apr 2018

Magnetic Phases Of Large-Spin Ultracold Bosons: Quantum Dimer Models And Spin Liquid Phases, Todd C. Rutkowski

Graduate Dissertations and Theses

This thesis investigates the plausibility of producing a quantum spin liquid (QSL) with ultracold bosonic atoms optically confined to the Mott insulating state. QSLs have received a great deal of attention for being an antiferromagnetic groundstate with many exotic properties, including the absence of local order, long-range entanglement, and fractionalized excitations. However, the identification and characterization of these phases in solid state systems remains a great challenge. Here we outline an alternate route to uncovering the QSL phase, which from the nature of spin angular momentum for ultracold atoms encounters many properties unique to these systems along the way. This …