Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

PDF

Series

2017

Institution
Keyword
Publication

Articles 1 - 30 of 121

Full-Text Articles in Physics

Magnetocrystalline Anisotropy Of "-Fe2o3, Imran Ahamed, Rohilt Pathak, Arti Kashyap Dec 2017

Magnetocrystalline Anisotropy Of "-Fe2o3, Imran Ahamed, Rohilt Pathak, Arti Kashyap

Nebraska Center for Materials and Nanoscience: Faculty Publications

The epsilon Fe2O3 phase of iron oxide has been studied to understand the spin structure and the magnetocrystalline anisotropy in the bulk and in thin films of "-Fe2O3 and Co-doped "-Fe2O3. The preferential magnetization direction in the nanoparticles of "-Fe2O3 is along the a-axis [M. Gich et al., Chem. Mater. 18, 3889 (2006)]. Compared to the bulk band gap of 1.9 eV, the thin-film band gap is reduced to 1.3 eV in the Co-free films and to 0.7 eV in the film with partial …


Texture Development And Coercivity Enhancement In Cast Alnico 9 Magnets, Wenyong Zhang, Shah Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, Iver Anderson, Matthew Kramer, Wei Tang, Jeff Shield, David J. Sellmyer Dec 2017

Texture Development And Coercivity Enhancement In Cast Alnico 9 Magnets, Wenyong Zhang, Shah Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, Iver Anderson, Matthew Kramer, Wei Tang, Jeff Shield, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The effect of Y addition and magnetic field on texture and magnetic properties of arc-melted alnico 9 magnets has been investigated. Small additions of Y (1.5 wt.%) develop a (200) texture for the arc-melted alnico 9 magnet. Such a texture is hard to form in cast samples. To achieve this goal, we set up a high-field annealing system with a maximum operation temperature of 12500 C. This system enabled annealing in a field of 45 kOe with subsequent draw annealing for the solutionized buttons; we have been able to substantially increase remanence ratio and coercivity, from 0.70 and 1200 …


Prediction Of A Mobile Two-Dimensional Electron Gas At The Lasco3/Basno3(001) Interface, Tula R. Paudel, Evgeny Y. Tsymbal Dec 2017

Prediction Of A Mobile Two-Dimensional Electron Gas At The Lasco3/Basno3(001) Interface, Tula R. Paudel, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Two-dimensional electron gases (2DEG) at oxide interfaces, such as LaAlO3/SrTiO3 (001), have aroused significant interest due to their high carrier density (∼1014 cm−2) and strong lateral confinement (∼1 nm). However, these 2DEGs are normally hosted by the weakly dispersive and degenerate d bands (e.g., Ti-3d bands), which are strongly coupled to the lattice, causing mobility of such 2DEGs to be relatively low at room temperature (∼1 cm2/Vs). Here, we propose using oxide host materials with the conduction bands formed from s electrons to increase carrier mobility and soften its temperature dependence. Using …


Origin Of The Exciton Mass In The Frustrated Mott Insulator Na2Iro3, Zhanybek Alpichshev, Edbert J. Sie, Fahad Mahmood, Gang Cao, Nuh Gedik Dec 2017

Origin Of The Exciton Mass In The Frustrated Mott Insulator Na2Iro3, Zhanybek Alpichshev, Edbert J. Sie, Fahad Mahmood, Gang Cao, Nuh Gedik

Physics and Astronomy Faculty Publications

We use a three-pulse ultrafast optical spectroscopy to study the relaxation processes in a frustrated Mott insulator Na2IrO3. By being able to independently produce the out-of-equilibrium bound states (excitons) of doublons and holons with the first pulse and suppress the underlying antiferromagnetic order with the second one, we were able to elucidate the relaxation mechanism of quasiparticles in this system. By observing the difference in the exciton dynamics in the magnetically ordered and disordered phases we found that the mass of this quasiparticle is mostly determined by its interaction with the surrounding spins.


Similar Ultrafast Dynamics Of Several Dissimilar Dirac And Weyl Semimetals, Christopher P. Weber, Bryan S. Berggren, Madison G. Masten, Thomas C. Ogloza, Skylar Deckoff-Jones, Julien Madéo, Michael K. L. Man, Keshav M. Dani, Lingxiao Zhao, Genfu Chen, Jinyu Liu, Zhiqiang Mao, Leslie M. Schoop, Bettina V. Lotsch, Stuart S. P. Parkin, Mazhar Ali Dec 2017

Similar Ultrafast Dynamics Of Several Dissimilar Dirac And Weyl Semimetals, Christopher P. Weber, Bryan S. Berggren, Madison G. Masten, Thomas C. Ogloza, Skylar Deckoff-Jones, Julien Madéo, Michael K. L. Man, Keshav M. Dani, Lingxiao Zhao, Genfu Chen, Jinyu Liu, Zhiqiang Mao, Leslie M. Schoop, Bettina V. Lotsch, Stuart S. P. Parkin, Mazhar Ali

Physics

Recent years have seen the rapid discovery of solids whose low-energy electrons have a massless, linear dispersion, such as Weyl, line-node, and Dirac semimetals. The remarkable optical properties predicted in these materials show their versatile potential for optoelectronic uses. However, little is known of their response in the picoseconds after absorbing a photon. Here, we measure the ultrafast dynamics of four materials that share non-trivial band structure topology but that differ chemically, structurally, and in their low-energy band structures: ZrSiS, which hosts a Dirac line node and Dirac points; TaAs and NbP, which are Weyl semimetals; and Sr1–y …


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Epitaxial Thin Films Of Dirac Semimetal Antiperovskite Cu3Pdn, C. X. Quintela, N. Campbell, D. F. Shao, J. Irwin, D. T. Harris, L. Lie, T. J. Anderson, N. Reiser, X. Q. Pan, Evgeny Y. Tsymbal, M. S. Rzchowski, C B. Eom Nov 2017

Epitaxial Thin Films Of Dirac Semimetal Antiperovskite Cu3Pdn, C. X. Quintela, N. Campbell, D. F. Shao, J. Irwin, D. T. Harris, L. Lie, T. J. Anderson, N. Reiser, X. Q. Pan, Evgeny Y. Tsymbal, M. S. Rzchowski, C B. Eom

Evgeny Tsymbal Publications

The growth and study of materials showing novel topological states of matter is one of the frontiers in condensed matter physics. Among this class of materials, the nitride antiperovskite Cu3PdN has been proposed as a new three-dimensional Dirac semimetal. However, the experimental realization of Cu3PdN and the consequent study of its electronic properties have been hindered due to the difficulty of synthesizing this material. In this study, we report fabrication and both structural and transport characterization of epitaxial Cu3PdN thin films grown on (001)-oriented SrTiO3 substrates by reactive magnetron sputtering and post-annealed in …


Dynamic Self-Assembly And Self-Organized Transport Of Magnetic Micro-Swimmers, Gašper Kokot, German Kolmakov V, Igor S. Aranson, Alexey Snezhko Nov 2017

Dynamic Self-Assembly And Self-Organized Transport Of Magnetic Micro-Swimmers, Gašper Kokot, German Kolmakov V, Igor S. Aranson, Alexey Snezhko

Publications and Research

We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. The morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field.


Spin Mode Switching At The Edge Of A Quantum Hall System, Udit Khanna, Ganpathy Murthy, Sumathi Rao, Yuval Gefen Nov 2017

Spin Mode Switching At The Edge Of A Quantum Hall System, Udit Khanna, Ganpathy Murthy, Sumathi Rao, Yuval Gefen

Physics and Astronomy Faculty Publications

Quantum Hall states can be characterized by their chiral edge modes. Upon softening the edge potential, the edge has long been known to undergo spontaneous reconstruction driven by charging effects. In this Letter we demonstrate a qualitatively distinct phenomenon driven by exchange effects, in which the ordering of the edge modes at ν = 3 switches abruptly as the edge potential is made softer, while the ordering in the bulk remains intact. We demonstrate that this phenomenon is robust, and has many verifiable experimental signatures in transport.


Surface Impedance And Optimum Surface Resistance Of A Superconductor With An Imperfect Surface, Alex Gurevich, Takayuki Kubo Nov 2017

Surface Impedance And Optimum Surface Resistance Of A Superconductor With An Imperfect Surface, Alex Gurevich, Takayuki Kubo

Physics Faculty Publications

We calculate a low-frequency surface impedance of a dirty, s-wave superconductor with an imperfect surface incorporating either a thin layer with a reduced pairing constant or a thin, proximity-coupled normal layer. Such structures model realistic surfaces of superconducting materials which can contain oxide layers, absorbed impurities, or nonstoichiometric composition. We solved the Usadel equations self-consistently and obtained spatial distributions of the order parameter and the quasiparticle density of states which then were used to calculate a low-frequency surface resistance Rs (T) and the magnetic penetration depth λ(T) as functions of temperature in the limit of local London electrodynamics. It …


Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze Oct 2017

Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze

Faculty Publications, Chemistry

When investigating low-frequency (0.1 Hz) oscillations of multiphase high-temperature cuprate superconductors (HTCS) Bi1,7Pb0,3Sr2Ca(n-1)CunOy (n=2-30), a wide attenuation peak (ΔT~100 К) with a maximum at Т≈200 К was detected. This peak was particularly pronounced in field cooling (FC) experiments, i.e. after abrupt cooling of the sample in the external magnetic field at the temperature Т<Тс with subsequent slow warming up to room temperature with invariance of the applied field. The attenuation peak height depended on the preliminaryorientation (before cooling) of the samples θ in the measured permanent magnetic field Н. On the one hand, it is well known that, after the FC procedure and subsequent slow warming up, at the temperatures close to the critical temperature Тс, the attenuation peak associated with “melting” of the Abrikosov frozen vortex structure and its disappearance at Т >Тс is detected in monophase samples. At the same time, in most multiphase bismuth HTCS samples, synthesized using solar energy and superfast quenching of the melt, the attenuation peak with the maximum at Т≈200 К was observed.Depending on the conditions of synthesis, the attenuation peak could …


Characterizing The Effects Of Radiation On Muscle Cells, Lori Caldwell, Elizabeth Vargis, Charles Harding, Jr Dennison Oct 2017

Characterizing The Effects Of Radiation On Muscle Cells, Lori Caldwell, Elizabeth Vargis, Charles Harding, Jr Dennison

Posters

One of the primary concerns for those spending time in low gravity and high radiation environments is muscle atrophy. A major cause of muscular atrophy is oxidative stress which is amplified by increased levels of ionizing radiation during spaceflight. Additionally, high levels of radiation can damage DNA, increasing the risk of cancer. Utah State University’s Space Environment Test Facility was used to irradiate C2C12 myoblasts and human vascular endothelial cells with a beta-radiation dosage mimicking that on the International Space Station and a 3-year deep space mission.


Electron Yield Of A Carbon-Composite Nanodielectric, Matthew Robertson, Justin Christensen, Greg Wilson, Jr Dennison Oct 2017

Electron Yield Of A Carbon-Composite Nanodielectric, Matthew Robertson, Justin Christensen, Greg Wilson, Jr Dennison

Posters

No abstract provided.


Temperature Dependence Of Electrostatic Discharge In Highly Disordered Polymers, Tyler Kippen, Allen Andersen, Jr Dennison Oct 2017

Temperature Dependence Of Electrostatic Discharge In Highly Disordered Polymers, Tyler Kippen, Allen Andersen, Jr Dennison

Posters

No abstract provided.


Pulsed Electro-Acoustic Measurements Of Charging And Relaxation In Low Density Polyethylene, Zachary Gibson Oct 2017

Pulsed Electro-Acoustic Measurements Of Charging And Relaxation In Low Density Polyethylene, Zachary Gibson

Presentations

No abstract provided.


Surfaces And Interfaces Of Magnetoelectric Oxide Systems, Shi Cao Oct 2017

Surfaces And Interfaces Of Magnetoelectric Oxide Systems, Shi Cao

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Magnetoelectric materials Cr2O3, hexagonal LuFeO3 and YbFeO3 are studied in this thesis. The surface of chromia (Cr2O3) has a surface electronic structure distinct from the bulk. Our work shows that placing a Cr2O3 single crystal into a single domain state will result in net Cr2O3 spin polarization at the boundary, even in the presence of a gold overlayer. From the Cr 2p3=2 X-ray magnetic circular dichroism signal, there is clear evidence of interface polarization with overlayers of both Pd and Pt on chromia. Cobalt thin films on Cr2O3(0001) show larger magnetic contrast in magnetic force microscopy indicating enhancement of perpendicular …


Characterizing The Effects Of Radiation On Muscle Cells, Lori Caldwell, Charles Harding, Jr Dennison, Elizabeth Vargis Oct 2017

Characterizing The Effects Of Radiation On Muscle Cells, Lori Caldwell, Charles Harding, Jr Dennison, Elizabeth Vargis

Posters

As longer space missions become more desirable to public and private institutions, the physiological impact on astronauts must be considered. One of the primary concerns for those spending time in low gravity and high radiation environments is muscle atrophy. A major cause of muscular atrophy is oxidative stress which is amplified by increased levels of ionizing radiation during spaceflight. Additionally, high levels of radiation can damage DNA, increasing the risk of cancer. Utah State University’s Space Environment Test Facility was used to irradiate C2C12 myoblasts and human vascular endothelial cells with a dosage mimicking that on the International Space Station …


Screening And Plasma Oscillations In An Electron Gas In The Hydrodynamic Approximation, Eugene B. Kolomeisky, Joseph P. Straley Oct 2017

Screening And Plasma Oscillations In An Electron Gas In The Hydrodynamic Approximation, Eugene B. Kolomeisky, Joseph P. Straley

Physics and Astronomy Faculty Publications

A hydrodynamic theory of screening in a generic electron gas of arbitrary dimensionality is given that encompasses all previously studied cases and clarifies the predictions of the many-body approach. We find that long-wavelength plasma oscillations are classical phenomena with quantum-mechanical effects playing no explicit role. The character of the oscillations is solely dictated by the dimensionality of the electron system and its equation of state in the neutral limit. Materials whose excitations are described by the Dirac dispersion law—such as doped graphene or a Weyl semimetal—are no exception to this rule.


Electron Yield Of Challenging Materials: Low Density Polyethylene And Carbon-Composite Nanodielectrics, Matthew Robertson, Jordan Lee, Jr Dennison Oct 2017

Electron Yield Of Challenging Materials: Low Density Polyethylene And Carbon-Composite Nanodielectrics, Matthew Robertson, Jordan Lee, Jr Dennison

Presentations

The electron yield—the ratio of the number of emitted electrons to incident electrons—is a key material property that characterizes how materials will charge due to exposure to electron fluxes. The USU Materials Physics Group has developed expertise in measuring this for a wide array of conductors, semiconductors and insulators, including many challenging materials. The basic definitions associated with electron yield and how they are measured will be discussed. We will highlight many critical applications investigated at USU, particularly those associated with spacecraft charging as materials interact with space plasma environments. Electron irradiation experiments conducted to investigate the electron transport, charging, …


Electron Yield Of Challenging Materials: Low Density Polyethylene And Carbon-Composite Nanodielectrics, Matthew Robertson, Jordan Lee, Jr Dennison Oct 2017

Electron Yield Of Challenging Materials: Low Density Polyethylene And Carbon-Composite Nanodielectrics, Matthew Robertson, Jordan Lee, Jr Dennison

Presentations

No abstract provided.


Highly Accelerated Test Method For Characterizing Likelihood Of Breakdown In Hvdc Dielectric Materials, Allen Andersen, Jr Dennison Oct 2017

Highly Accelerated Test Method For Characterizing Likelihood Of Breakdown In Hvdc Dielectric Materials, Allen Andersen, Jr Dennison

Journal Articles

Increasing application and development of HVDC technologies emphasizes the need for improved characterization of candidate insulating materials. Accurately predicting the lifetime to breakdown of dielectric materials by means of accelerated voltage step-up to breakdown tests can be prohibitively time consuming. Step-up to breakdown tests with sufficiently slow voltage ramp rates that continuously monitor leakage current have detected a distribution of DC partial discharge (DCPD) events occurring prior to breakdown, which increase with increasing field. These DCPD distributions are shown to correlate strongly with the likelihood of breakdown for four common polymers. Given that hundreds of DCPD events are typically observed …


Cubesat Space Environments Effects Studied In The Space Survivability Test Chamber, Alexander Souvall, Gregory Wilson, Ben Russon, Katie Gamaunt, Jr Dennison Sep 2017

Cubesat Space Environments Effects Studied In The Space Survivability Test Chamber, Alexander Souvall, Gregory Wilson, Ben Russon, Katie Gamaunt, Jr Dennison

Posters

No abstract provided.


Ambipolar Spin Diffusion In P-Type Gaas: A Case Where Spin Diffuses More Than Charge, F. Cadiz, V. Notot, J. Filipovic, Christopher P. Weber, L. Martinelli, A.C. H. Rowe, S. Arscott Sep 2017

Ambipolar Spin Diffusion In P-Type Gaas: A Case Where Spin Diffuses More Than Charge, F. Cadiz, V. Notot, J. Filipovic, Christopher P. Weber, L. Martinelli, A.C. H. Rowe, S. Arscott

Physics

We investigate the diffusion of charge and spin at 15 K in p-type GaAs, combining transient-grating and energy-resolved microluminescence measurements to cover a broad range of photoelectron density. At very low optical power, in a unipolar nondegenerate regime, charge and spin diffuse at the same rate, implying that the spin-drag effects are negligible. Upon increasing the photoelectron concentration up to about 1016 cm–3, the charge diffusion constant decreases because of ambipolar electrostatic interactions with the slower-diffusing holes while the spin diffusion constant is reduced only weakly by the ambipolar interaction. A further increase in the excitation power causes increases in …


Three-Dimensional Nanomagnetism, Amalio Fernández-Pacheco, Robert Streubel, Olivier Fruchart, Riccardo Hertel, Peter Fischer, Russell P. Cowburn Aug 2017

Three-Dimensional Nanomagnetism, Amalio Fernández-Pacheco, Robert Streubel, Olivier Fruchart, Riccardo Hertel, Peter Fischer, Russell P. Cowburn

Robert Streubel Papers

Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.


Machine Learning Phases Of Strongly Correlated Fermions, Kelvin Ch'ng, Juan Carrasquilla, Roger Melko, Ehsan Khatami Aug 2017

Machine Learning Phases Of Strongly Correlated Fermions, Kelvin Ch'ng, Juan Carrasquilla, Roger Melko, Ehsan Khatami

Faculty Publications

Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural network machine learning techniques to distinguish finite-temperature phases of the strongly-correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling). We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. …


Evidence For A Low-Temperature Magnetic Ground State In Double-Perovskite Iridates With Ir5+(5D4) Ions, Jasminka Terzic, H. Zheng, Feng Ye, H. D. Zhao, P. Schlottmann, Lance E. De Long, S. J. Yuan, Gang Cao Aug 2017

Evidence For A Low-Temperature Magnetic Ground State In Double-Perovskite Iridates With Ir5+(5D4) Ions, Jasminka Terzic, H. Zheng, Feng Ye, H. D. Zhao, P. Schlottmann, Lance E. De Long, S. J. Yuan, Gang Cao

Physics and Astronomy Faculty Publications

We report an unusual magnetic ground state in single-crystal, double-perovskite Ba2YIrO6 and Sr-doped Ba2YIrO6 with Ir5+(5d4) ions. Long-range magnetic order below 1.7 K is confirmed by dc magnetization, ac magnetic susceptibility, and heat-capacity measurements. The observed magnetic order is extraordinarily delicate and cannot be explained in terms of either a low-spin S = 1 state, or a singlet Jeff = 0 state imposed by the spin-orbit interactions (SOI). Alternatively, the magnetic ground state appears consistent with a SOI that competes with comparable Hund's rule coupling and inherently large …


Nanosecond X-Ray Photon Correlation Spectroscopy On Magnetic Skyrmions, M. H. Seaberg, B. Holladay, J. C.T. Lee, M. Sikorski, A. H. Reid, S. A. Montoya, G. L. Dakovski, J. D. Koralek, G. Coslovich, S. Moeller, W. F. Schlotter, R. Streubel, S. D. Kevan, P. Fischer, E. E. Fullerton, J. L. Turner, F. J. Decker, S. K. Sinha, S. Roy, J. J. Turner Aug 2017

Nanosecond X-Ray Photon Correlation Spectroscopy On Magnetic Skyrmions, M. H. Seaberg, B. Holladay, J. C.T. Lee, M. Sikorski, A. H. Reid, S. A. Montoya, G. L. Dakovski, J. D. Koralek, G. Coslovich, S. Moeller, W. F. Schlotter, R. Streubel, S. D. Kevan, P. Fischer, E. E. Fullerton, J. L. Turner, F. J. Decker, S. K. Sinha, S. Roy, J. J. Turner

Robert Streubel Papers

We report an x-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant x-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond time scales in thin films of multilayered Fe/Gd that exhibit ordered stripe and Skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the Skyrmion phase and near the stripe-Skyrmion boundary. This technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.


Pea System Modeling And Signal Processing For Measurement Of Volume Charge Distributions In Thin Dielectric Films, Lee H. Pearson, Jr Dennison, Erick W. Griffiths, Anthony C. Pearson Aug 2017

Pea System Modeling And Signal Processing For Measurement Of Volume Charge Distributions In Thin Dielectric Films, Lee H. Pearson, Jr Dennison, Erick W. Griffiths, Anthony C. Pearson

Journal Articles

This paper discusses our effort to develop advanced pulsed electroacoustic (PEA) measurement system capabilities that incorporate (1) improved signal processing tools for increased signal/noise ratios; and (2) integrated PEA modeling tools. In addition, we emphasize state-of-the-art system electronic components, integrated environmental controls, and sensor improvements required to achieve high spatial resolution while maintaining reasonable temporal resolution for both ambient and in vacuo measurements of thin dielectrics charged using electron beam injection, which is most applicable for spacecraft charging tests. PEA measurement systems provide an important tool to investigate the spatial extent and dynamic evolution of embedded charge distributions in thin …


Perspectives On The Distributions Of Esd Breakdowns For Spacecraft Charging Applications, Allen Andersen, Krysta Moser, Jr Dennison Aug 2017

Perspectives On The Distributions Of Esd Breakdowns For Spacecraft Charging Applications, Allen Andersen, Krysta Moser, Jr Dennison

Journal Articles

Electrostatic discharge (ESD) continues to pose significant risks to space missions despite decades of intense study. Tabulated values of material breakdown strength used in spacecraft charging models are often based on cursory measurements that may not be fully relevant to a given mission. Materials physics offers insight into the pertinent variables that affect breakdown and how to address them experimentally for spacecraft applications. We present measured distributions of ESD data across several test configurations for three polymeric materials that, taken together, begin to provide an understanding of how to estimate the likelihood of ESD events over a spacecraft’s mission lifetime. …


Dependence Of Electrostatic Field Strength On Voltage Ramp Rate For Spacecraft Materials, Krysta Moser, Allen Andersen, Jr Dennison Aug 2017

Dependence Of Electrostatic Field Strength On Voltage Ramp Rate For Spacecraft Materials, Krysta Moser, Allen Andersen, Jr Dennison

Journal Articles

This work investigated the dependence of electrostatic field strength for spacecraft materials on voltage ramp rate, by applying an increasing incremental electrostatic field until electrostatic breakdown occurred. Tests on Kapton E found that at ramp rates two or three orders of magnitude lower than the maximum recommended rate, the electrostatic breakdown field, FESD was lower by a factor of two or more. This suggests that tabulated values of FESD, which have been used by the spacecraft charging community, could substantially overestimate FESD in common slowly evolving spacecraft situations. This study expanded these ramp rate tests to include a wider range …