Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

PDF

Series

2015

Spacecraft charging

Articles 1 - 2 of 2

Full-Text Articles in Physics

Electrostatic Discharge And Endurance Time Measurements Of Spacecraft Materials: A Defect-Driven Dynamic Model, Allen Andersen, Jr Dennison, Alec Sim, Charles Sim Jan 2015

Electrostatic Discharge And Endurance Time Measurements Of Spacecraft Materials: A Defect-Driven Dynamic Model, Allen Andersen, Jr Dennison, Alec Sim, Charles Sim

Journal Articles

Electrostatic breakdown leads to the majority of anomalies and failures attributed to spacecraft interactions with the plasma space environment. It is therefore critical to understand how electrostatic field strength (FESD) of spacecraft materials varies due to environmental conditions such as duration of applied electric field, rate of field change, history of exposure to high fields, and temperature. We have developed a dual-defect, thermodynamic, mean-field trapping model in terms of recoverable and irrecoverable defect modes to predict probabilities of breakdown. Fits to a variety of measurements of the dependence of FESD of insulating polymers on endurance time, voltage …


Dynamic Interplay Between Spacecraft Charging, Space Environment Interactions And Evolving Materials, Jr Dennison Jan 2015

Dynamic Interplay Between Spacecraft Charging, Space Environment Interactions And Evolving Materials, Jr Dennison

Journal Articles

While the effects on spacecraft charging from varying environmental conditions and from the selection of different construction materials have been studied extensively, modification of materials properties by exposure to the space plasma environment can also have profound effects on spacecraft charging. Given the increasingly demanding nature of space missions, there is a clear need to extend our understanding of the dynamic nature of material properties that affect spacecraft charging and to expand our knowledgebase of materials’ responses to specific environmental conditions so that we can more reliably predict the long term response of spacecraft to their environment. This paper focuses …