Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

PDF

Series

2012

Institution
Keyword
Publication

Articles 1 - 30 of 35

Full-Text Articles in Physics

Ferroelectric Instability Under Screened Coulomb Interactions, Yong Wang, Xiaohui Liu, John D. Burton, Sitaram S. Jaswal, Evgeny Y. Tsymbal Dec 2012

Ferroelectric Instability Under Screened Coulomb Interactions, Yong Wang, Xiaohui Liu, John D. Burton, Sitaram S. Jaswal, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

We explore the effect of charge carrier doping on ferroelectricity using density functional calculations and phenomenological modeling. By considering a prototypical ferroelectric material, BaTiO3, we demonstrate that ferroelectric displacements are sustained up to the critical concentration of 0.11 electron per unit cell volume. This result is consistent with experimental observations and reveals that the ferroelectric phase and conductivity can coexist. Our investigations show that the ferroelectric instability requires only a short-range portion of the Coulomb force with an interaction range of the order of the lattice constant. These results provide a new insight into the origin of ferroelectricity …


Electron-Phonon Coupling And Structural Phase Transitions On Au/Mo(112), Keisuke Fukutani Nov 2012

Electron-Phonon Coupling And Structural Phase Transitions On Au/Mo(112), Keisuke Fukutani

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The electronic structures, many-body interactions and Fermi surface topologies of Au/Mo(112) were investigated in detail and were found to play important roles in the newly discovered order-disorder structural phase transition of the system. First, the high-resolution angle-resolved photoemission spectroscopy was utilized to characterize the electronic band structure of Mo(112) in far greater details than before. This elucidated the existence of several surface-derived states and their dispersion relations in high precisions near the Fermi level, as well as the symmetries of the bulk and surface electronic states, which are in good quantitative agreement with the ab-initio calculations. Such thorough understanding of …


Ultra-Thin Perfect Absorber Employing A Tunable Phase Change Material, Mikhail A. Kats, Deepika Sharma, (...), M. M. Qazilbash, Et Al. Nov 2012

Ultra-Thin Perfect Absorber Employing A Tunable Phase Change Material, Mikhail A. Kats, Deepika Sharma, (...), M. M. Qazilbash, Et Al.

Arts & Sciences Articles

We show that perfect absorption can be achieved in a system comprising a single lossy dielectric layer of thickness much smaller than the incident wavelength on an opaque substrate by utilizing the nontrivial phase shifts at interfaces between lossy media. This design is implemented with an ultra-thin (∼λ/65) vanadium dioxide (VO2) layer on sapphire, temperature tuned in the vicinity of the VO2 insulator-to-metal phase transition, leading to 99.75% absorption at λ = 11.6 μm. The structural simplicity and large tuning range (from ∼80% to 0.25% in reflectivity) are promising for thermal emitters, modulators, and bolometers.


Hohenberg-Kohn Theorem Including Electron Spin, Xiao-Yin Pan, Viraht Sahni Oct 2012

Hohenberg-Kohn Theorem Including Electron Spin, Xiao-Yin Pan, Viraht Sahni

Publications and Research

The Hohenberg-Kohn theorem is generalized to the case of a finite system of N electrons in external electrostatic epsilon(r) = -del nu(r) and magnetostatic B(r) = del x A(r) fields in which the interaction of the latter with both the orbital and spin angular momentum is considered. For a nondegenerate ground state a bijective relationship is proved between the gauge invariant density rho(r) and physical current density j(r) and the potentials {nu(r), A(r)}. The possible many-to-one relationship between the potentials {v(r), A(r)} and the wave function is explicitly accounted for in the proof. With the knowledge that the basic variables …


Equilibrium Magnetic States In Individual Hemispherical Permalloy Caps, Robert Streubel, Volodymyr P. Kravchuk, Denis D. Sheka, Denys Makarov, Florian Kronast, Oliver G. Schmidt, Yuri Gaididei Sep 2012

Equilibrium Magnetic States In Individual Hemispherical Permalloy Caps, Robert Streubel, Volodymyr P. Kravchuk, Denis D. Sheka, Denys Makarov, Florian Kronast, Oliver G. Schmidt, Yuri Gaididei

Robert Streubel Papers

The magnetization distributions in individual soft magnetic permalloy caps on non-magnetic spherical particles with sizes ranging from 50 to 800nm are investigated. We experimentally visualize the magnetic structures at the resolution limit of the x-ray magnetic circular dichroism photoelectron emission microscopy (XMCD-PEEM). By analyzing the so-called tail contrast in XMCD-PEEM, the spatial resolution is significantly enhanced, which allowed us to explore magnetic vortices and their displacement on curved surfaces. Furthermore, cap nanostructures are modeled as extruded hemispheres to determine theoretically the phase diagram of equilibrium magnetic states. The calculated phase diagram agrees well with the experimental observations. © 2012 American …


Nanomechanical Resonator Coupled Linearly Via Its Momentum To A Quantum Point Contact, Latchezar L. Benatov, Miles P. Blencowe Aug 2012

Nanomechanical Resonator Coupled Linearly Via Its Momentum To A Quantum Point Contact, Latchezar L. Benatov, Miles P. Blencowe

Dartmouth Scholarship

We use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase (η=−π/2) where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing …


Information Content Of Spontaneous Symmetry Breaking, Marcelo Gleiser, Nikitas Stamatopoulos Aug 2012

Information Content Of Spontaneous Symmetry Breaking, Marcelo Gleiser, Nikitas Stamatopoulos

Dartmouth Scholarship

We propose a measure of order in the context of nonequilibrium field theory and argue that this measure, which we call relative configurational entropy (RCE), may be used to quantify the emergence of coherent low-entropy configurations, such as time-dependent or time-independent topological and nontopological spatially extended structures. As an illustration, we investigate the nonequilibrium dynamics of spontaneous symmetry breaking in three spatial dimensions. In particular, we focus on a model where a real scalar field, prepared initially in a symmetric thermal state, is quenched to a broken-symmetric state. For a certain range of initial temperatures, spatially localized, long-lived structures known …


Magnetic Vortices On Closely Packed Spherically Curved Surfaces, Robert Streubel, Denys Makarov, Florian Kronast, Volodymyr Kravchuk, Manfred Albrecht, Oliver G. Schmidt May 2012

Magnetic Vortices On Closely Packed Spherically Curved Surfaces, Robert Streubel, Denys Makarov, Florian Kronast, Volodymyr Kravchuk, Manfred Albrecht, Oliver G. Schmidt

Robert Streubel Papers

We investigate the change of magnetic vortex states driven by curvature. The equilibrium state and magnetization reversal of soft magnetic permalloy (Py, Ni 80Fe 20) caps on self-assembled spherical particles with diameters of 100, 330, and 800 nm are investigated, revealing the vortex ground state for individual caps and closely packed cap arrays. The magnetic coupling between vortices is substantially reduced due to the shape of the cap as apparent in a much weaker dependence of the magnetization reversal process on the separation distance. Interestingly, the remaining coupling is still sufficiently large to introduce chirality frustrated vortex states …


Low Temperature Cathodoluminescence Of Space Observatory Materials, Amberly Evans Jensen, Gregory Wilson, Justin Dekany, Jr Dennison May 2012

Low Temperature Cathodoluminescence Of Space Observatory Materials, Amberly Evans Jensen, Gregory Wilson, Justin Dekany, Jr Dennison

Conference Proceedings

In recent charging studies, a discernable glow was detected emanating from sample surfaces undergoing electron beam bombardment that resulted from a luminescent effect termed cathodoluminescence. This suggests that some of the materials used as optical elements, structural components, and thermal control surfaces in the construction of space-based observatories might luminesce when exposed to sufficiently energetic charged particle fluxes from the space plasma environment. If these visible, infrared and ultraviolet emissions are intense enough, they can potentially produce optical contamination detrimental to the performance of the observatory optical elements and sensors, and act to limit their sensitivity and performance windows. As …


Charging Effects Of Multilayered Dielectric Spacecraft Materials: Surface Voltage, Discharge And Arcing, Gregory Wilson, Amberly Evans Jensen, Justin Dekany, Jr Dennison May 2012

Charging Effects Of Multilayered Dielectric Spacecraft Materials: Surface Voltage, Discharge And Arcing, Gregory Wilson, Amberly Evans Jensen, Justin Dekany, Jr Dennison

Conference Proceedings

Charging of thin-film, multilayer dielectric materials subject to electron bombardment was found to evolve with time. The charging behavior was also highly dependent on the incident energy of the monoenergetic electron beams; this is driven by energy dependant processes including the electron penetration depth, electron emission, and material conductivity. The electron penetration depth is the average range to which incident electrons at a given incident energy penetrate into the material, thus defining the mean depth of an embedded charge layer. The secondary electron yield is the ratio of electrons emitted from the surface to the number of incident electrons; this …


Exact Results In Model Statistical Systems, Peter H. Kleban May 2012

Exact Results In Model Statistical Systems, Peter H. Kleban

University of Maine Office of Research Administration: Grant Reports

Intellectual merit: This project focuses on continued research on the exact study of the statistical mechanics of model systems. The research concentrates on two areas:

1) critical percolation in two dimensions, an important and very extensively studied model system, to which we are bringing new and unexpected approaches, and

2) the thermodynamics of the Farey fraction spin chain, a set of one dimensional models with interesting phase transition behavior and connections to multifractals, and dynamical systems.

This project aims at new results and insights in both these areas. Research on the Farey models illuminates an interesting borderline case in the …


Hohenberg-Kohn And Percus-Levy-Lieb Proofs Of Density-Functional Theory, Viraht Sahni, Xiao-Yin Pan May 2012

Hohenberg-Kohn And Percus-Levy-Lieb Proofs Of Density-Functional Theory, Viraht Sahni, Xiao-Yin Pan

Publications and Research

The premise of density-functional theory is that knowledge of the ground-state density uniquely determines the Hamiltonian, and thereby, via solution of the corresponding time-independent Schrodinger equation, all the properties of the system. The density therefore constitutes a basic variable of quantum mechanics. There are at present two paths from the density to the Hamiltonian: the Hohenberg and Kohn proof of the bijectivity between the external potential and the basic variable, and the Percus, Levy, and Lieb constrained-search proof. We argue the Hohenberg- and Kohn-type proof to be the more fundamental, and that this is the case in general when both …


Evaluation Of The Temperature Dependence Of Endurance Models Of Electrostatic Breakdown, Charlie Sim, Jr Dennison May 2012

Evaluation Of The Temperature Dependence Of Endurance Models Of Electrostatic Breakdown, Charlie Sim, Jr Dennison

Senior Theses and Projects

The goal of this research was to investigate temperature and time dependent models for the electrostatic breakdown of polymeric spacecraft insulators. Temperature dependent breakdown was found by inducing an electrostatic breakdown in the prototypical polymer Low Density Polyethylene (LDPE) at various temperatures. Time dependent breakdown was found by applying a static voltage to LDPE and measuring the time to electrostatic breakdown. No significant temperature dependence of the electrostatic breakdown of LDPE was observed in a temperature range of 150 K to 300 K. The time dependent results show that the time to electrostatic breakdown is modeled by a negative logarithmic …


The Effects Of Surface Roughness On Diffuse Optical Reflection And Photoyields On Spacecraft Materials, Amberly Evans Jensen May 2012

The Effects Of Surface Roughness On Diffuse Optical Reflection And Photoyields On Spacecraft Materials, Amberly Evans Jensen

Senior Theses and Projects

The goal of this project was to measure the change in the absorbance of spacecraft materials due to changes in the surface of the material. The absorbance was obtained by measuring reflectance and transmittance. We found that modifying the surface of a material did affect the material’s specular reflectance. However, the change may not have been entirely due to an increase in absorbance, but may also imply an increase in the diffuse reflection. To understand the affect on absorbance, diffuse reflectance and transmission will need to be measured. This will lead to a prediction of how surface modification affects the …


Insulator-To-Metal Transition And Correlated Metallic State Of V 2 O 3 Investigated By Optical Spectroscopy, M. K. Stewart, D. Brownstead, (...), M. M. Qazilbash, Et Al. May 2012

Insulator-To-Metal Transition And Correlated Metallic State Of V 2 O 3 Investigated By Optical Spectroscopy, M. K. Stewart, D. Brownstead, (...), M. M. Qazilbash, Et Al.

Arts & Sciences Articles

The optical properties of V2O3 thin films are investigated across the insulator-to-metal transition and in the metallic state. The spectral weight transfer observed across the transition, over an energy scale of 5 eV, is consistent with the Mott-Hubbard model for correlated electron systems. In the metallic phase, a strong Drude peak is observed, which exhibits a pronounced temperature dependence related to the transfer of states from the Hubbard bands to the quasiparticle peaks as the temperature is reduced. The analysis of the far-infrared spectra reveals signatures of strong electronic correlations in V2O3. Finally, a comparison to VO2 data is presented.


Out-Of-Surface Vortices In Spherical Shells, Volodymyr P. Kravchuk, Denis D. Sheka, Robert Streubel, Denys Makarov, Oliver G. Schmidt, Yuri Gaididei Apr 2012

Out-Of-Surface Vortices In Spherical Shells, Volodymyr P. Kravchuk, Denis D. Sheka, Robert Streubel, Denys Makarov, Oliver G. Schmidt, Yuri Gaididei

Robert Streubel Papers

The interplay of topological defects with curvature is studied for out-of-surface magnetic vortices in thin spherical nanoshells. In the case of an easy-surface Heisenberg magnet it is shown that the curvature of the underlying surface leads to a coupling between the localized out-of-surface component of the vortex with its delocalized in-surface structure, i.e., polarity-chirality coupling. © 2012 American Physical Society.


New View Of The Occupied Band Structure Of Mo(112), Keisuke Fukutani, Hirokazu Hayashi, I. N. Yakovkin, Tula R. Paudel, Takafumi Habuchi, Daisuke Hirayama, Jian Jiang, Hideaki Iwasawa, Kenya Shimada, Ning Wu, Evgeny Y. Tsymbal, Yaroslav B. Losovyj, Peter A. Dowben Apr 2012

New View Of The Occupied Band Structure Of Mo(112), Keisuke Fukutani, Hirokazu Hayashi, I. N. Yakovkin, Tula R. Paudel, Takafumi Habuchi, Daisuke Hirayama, Jian Jiang, Hideaki Iwasawa, Kenya Shimada, Ning Wu, Evgeny Y. Tsymbal, Yaroslav B. Losovyj, Peter A. Dowben

Evgeny Tsymbal Publications

We present a comprehensive examination of the occupied surface-weighted band structure of Mo(112) along the two high-symmetry directions of the surface Brillouin zone, both from theoretical and experimental perspectives. The band structures are found to be significantly different for the states along the two high-symmetry directions and for the states with even and odd reflection parities with respect to the mirror planes. The present study suggests the existence of a number of surface-weighted bands along both high-symmetry directions. The complexity of the band structure near the Fermi level may impose potential difficulties in experimental determination of the electronphonon coupling parameters …


Demonstration Of The Gunnarsson-Lundqvist Theorem And The Multiplicity Of Potentials For Excited States, Yu-Qi Li, Xiao-Yin Pan, Biao Li, Viraht Sahni Mar 2012

Demonstration Of The Gunnarsson-Lundqvist Theorem And The Multiplicity Of Potentials For Excited States, Yu-Qi Li, Xiao-Yin Pan, Biao Li, Viraht Sahni

Publications and Research

The Gunnarsson-Lundqvist (GL) theorem of density functional theory states that there is a one-to-one relationship between the density of the lowest nondegenerate excited state of a given symmetry and the external potential. As a consequence, knowledge of this excited state density determines the external potential uniquely. [The GL theorem is the equivalent for such excited states of theHohenberg-Kohn (HK) theorem for nondegenerate ground states.] For other excited states, there is no equivalent of the GL or HK theorem. For these states, there thus exist multiple potentials that generate the excited-state density. We show, by example, the satisfaction that the GL …


Electron Drift-Mobility Measurements In Polycrystalline Cuin1-Xgaxse2 Solar Cells, Steluta A. Dinca, Eric A. Schiff, William N. Shafarman, Brian Egaas, Rommel Noufi, David L. Young Mar 2012

Electron Drift-Mobility Measurements In Polycrystalline Cuin1-Xgaxse2 Solar Cells, Steluta A. Dinca, Eric A. Schiff, William N. Shafarman, Brian Egaas, Rommel Noufi, David L. Young

Physics - All Scholarship

We report photocarrier time-of-flight measurements of electron drift mobilities for the p-type CuIn1-xGaxSe2 films incorporated in solar cells. The electron mobilities range from 0.02 to 0.05 cm^2/Vs and are weakly temperature-dependent from 100–300 K. These values are lower than the range of electron Hall mobilities (2-1100 cm2/Vs) reported for n-type polycrystalline thin films and single crystals. We propose that the electron drift mobilities are properties of disorder-induced mobility edges and discuss how this disorder could increase cell efficiencies.


Ferroelectric And Multiferroic Tunnel Junctions, Evgeny Y. Tsymbal, Alexei Gruverman, Vincent Garcia, Manuel Bibes, A. Barthélémy Feb 2012

Ferroelectric And Multiferroic Tunnel Junctions, Evgeny Y. Tsymbal, Alexei Gruverman, Vincent Garcia, Manuel Bibes, A. Barthélémy

Evgeny Tsymbal Publications

The phenomenon of electron tunneling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fi elds of physics, as well as creating sub-fi elds on its own. Spin-dependent tunneling in magnetic tunnel junctions has aroused considerable interest and development. In parallel with this endeavor, recent advances in thin-fi lm ferroelectrics have demonstrated the possibility of achieving stable and switchable ferroelectric polarization in nanometer-thick fi lms. This discovery opened the possibility of using thin-fi lm ferroelectrics as barriers in magnetic tunnel junctions, thus merging the fi elds of magnetism, ferroelectricity, and spin-polarized transport …


Majorana Modes In Time-Reversal Invariant S -Wave Topological Superconductors, Shusa Deng, Lorenza Viola, Gerardo Ortiz Jan 2012

Majorana Modes In Time-Reversal Invariant S -Wave Topological Superconductors, Shusa Deng, Lorenza Viola, Gerardo Ortiz

Dartmouth Scholarship

We present a time-reversal invariant s-wave superconductor supporting Majorana edge modes. The multiband character of the model together with spin-orbit coupling are key to realizing such a topological superconductor. We characterize the topological phase diagram by using a partial Chern number sum, and show that the latter is physically related to the parity of the fermion number of the time-reversal invariant modes. By taking the self-consistency constraint on the s-wave pairing gap into account, we also establish the possibility of a direct topological superconductor-to-topological insulator quantum phase transition.


Magnetoelectric Interactions Between An Organic Ferroelectric And A Transition Metal Ferromagnet, Abhijit Mardana Jan 2012

Magnetoelectric Interactions Between An Organic Ferroelectric And A Transition Metal Ferromagnet, Abhijit Mardana

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

The interaction between ferromagnetic and ferroelectric films, the magnetoelectric effect, is a fascinating fundamental research area as well as having potential applications in magnetic data storage devices. We have investigated magnetoelectric coupling effects in thin film heterostructures, consists of metallic ferromagnet, cobalt, and the polymer ferroelectric [P(VDF-TrFE) 70:30]. The work described here encompasses changes in ferroelectric polarization with magnetic field as well as changes in the magnetic anisotropy with ferroelectric polarization.

In samples of Co overlayers on P(VDF-TrFE), in which the Co is not constrained by the substrate, the polarization shows a large change on application of a perpendicular magnetic …


Qpced2.0: A Computer Program For The Processing And Quantification Of Polycrystalline Electron Diffraction Patterns, Xingzhong Li Jan 2012

Qpced2.0: A Computer Program For The Processing And Quantification Of Polycrystalline Electron Diffraction Patterns, Xingzhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

The processing and quantification of electron diffraction patterns have become vital in advanced electron crystallographic analysis work. A computer program, QPCED2.0, has been developed for the handling of selected-area electron diffraction patterns for polycrystalline materials. QPCED2.0 can be used to enhance the visibility of electron diffraction patterns, to convert electron diffraction patterns into intensity profiles, and to retrieve precisely the lattice d spacings and the integral intensities of the diffraction rings. The design and implementation of QPCED2.0 are elucidated and application examples are given.


Assessing The Feasibility Of Cosmic-Ray Acceleration By Magnetic Turbulence At The Magnetic Center, M. Fatuzzo, F. Melia Jan 2012

Assessing The Feasibility Of Cosmic-Ray Acceleration By Magnetic Turbulence At The Magnetic Center, M. Fatuzzo, F. Melia

Faculty Scholarship

No abstract provided.


Quantitative Study Of Spin-Flip Co-Tunneling Transport In A Quantum Dot, S. Herbert, T-M. Liu, A. N. Ngo Jan 2012

Quantitative Study Of Spin-Flip Co-Tunneling Transport In A Quantum Dot, S. Herbert, T-M. Liu, A. N. Ngo

Faculty Scholarship

No abstract provided.


Optically Trapped Fluorescent Nanodiamonds, Viva Horowitz Jan 2012

Optically Trapped Fluorescent Nanodiamonds, Viva Horowitz

Scholarly Projects

The nitrogen-vacancy (NV) color center in diamond is gaining significant interest for applications in nanoscale sensing. The optical addressability of the magnetically sensitive spin states and the ability to coherently control these states at room temperature makes this system an exciting candidate for spin-based magnetometry. I constructed an optical tweezers apparatus combined with a confocal fluorescence apparatus. Using the optical apparatus, we demonstrate three-dimensional position control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy (NV) color centers. Despite the motion and random orientation of NV centers suspended in the …


Intrinsic Defects In Multiferroic Bifeo3 And Their Effect On Magnetism, Tula R. Paudel, Sitaram S. Jaswal, Evgeny Y. Tsymbal Jan 2012

Intrinsic Defects In Multiferroic Bifeo3 And Their Effect On Magnetism, Tula R. Paudel, Sitaram S. Jaswal, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

We investigate the energetics of the intrinsic defects in bulk multiferroic BiFeO3 and explore their implication for magnetization using a first-principles approach based on density functional theory. We find that the dominant defects in oxidizing (oxygen-rich) conditions are Bi and Fe vacancies and in reducing (oxygen-poor) conditions are O and Bi vacancies. The calculated carrier concentration shows that the BiFeO3 grown in oxidizing conditions has p-type conductivity. The conductivity decreases with oxygen partial pressure, and the material becomes insulating with a tendency for n-type conductivity. We find that the Bi and Fe vacancies produce a magnetic …


Magnetic And Superconducting Phases At The Laalo3/Srtio3 Interface: The Role Of Interfacial Ti 3D Electrons, N. Pavlenko, Thilo Kopp, Evgeny Y. Tsymbal, George A. Sawatzky, Jochen Mannhart Jan 2012

Magnetic And Superconducting Phases At The Laalo3/Srtio3 Interface: The Role Of Interfacial Ti 3D Electrons, N. Pavlenko, Thilo Kopp, Evgeny Y. Tsymbal, George A. Sawatzky, Jochen Mannhart

Evgeny Tsymbal Publications

Ferromagnetism and superconductivity are, in most cases, adverse. However, recent experiments reveal that they coexist at interfaces of LaAlO3 and SrTiO3. We analyze the magnetic state within density functional theory and provide evidence that magnetism is not an intrinsic property of the two-dimensional electron liquid at the interface. We demonstrate that the robust ferromagnetic state is induced by the oxygen vacancies in SrTiO3 or in the LaAlO3 layer. This allows for the notion that areas with increased density of oxygen vacancies produce ferromagnetic puddles and account for the previous observation of a superparamagnetic behavior in …


Growth Diagram And Magnetic Properties Of Hexagonal Lufe2o4 Thin Films, Wenbin Wang, Zheng Gai, Miaofang Chi, Jason D. Fowlkes, Jieyu Yi, Leyi Zhu, Xuemei Cheng, David J. Keavney, Paul C. Snijders, Thomas Z. Ward, Jian Shen, Xiaoshan Xu Jan 2012

Growth Diagram And Magnetic Properties Of Hexagonal Lufe2o4 Thin Films, Wenbin Wang, Zheng Gai, Miaofang Chi, Jason D. Fowlkes, Jieyu Yi, Leyi Zhu, Xuemei Cheng, David J. Keavney, Paul C. Snijders, Thomas Z. Ward, Jian Shen, Xiaoshan Xu

Xiaoshan Xu Papers

Agrowth diagram of Lu-Fe-O compounds on MgO (111) substrates using pulsed laser deposition is constructed based on extensive growth experiments. The LuFe2O4 phase can only be grown in a small range of temperature and O2 pressure conditions. An understanding of the growth mechanism of Lu-Fe-O compound films is offered in terms of the thermochemistry at the surface. Superparamagnetism is observed in the LuFe2O4 film and is explained in terms of the effect of the impurity hexagonal LuFeO3 (h-LuFeO3) phase and structural defects.


Ferroelectric Control Of Magnetocrystalline Anisotropy At Cobalt/Poly(Vinylidene Fluoride) Interfaces, Pavel Lukashev, Tula R. Paudel, Juan M. López-Encarnación, Shireen Adenwalla, Evgeny Y. Tsymbal, Julian P. Velev Jan 2012

Ferroelectric Control Of Magnetocrystalline Anisotropy At Cobalt/Poly(Vinylidene Fluoride) Interfaces, Pavel Lukashev, Tula R. Paudel, Juan M. López-Encarnación, Shireen Adenwalla, Evgeny Y. Tsymbal, Julian P. Velev

Shireen Adenwalla Papers

Electric field control of magnetization is one of the promising avenues for achieving high-density energy-efficient magnetic data storage. Ferroelectric materials can be especially useful for that purpose as a source of very large switchable electric fields when interfaced with a ferromagnet. Organic ferroelectrics, such as poly(vinylidene fluoride) (PVDF), have an additional advantage of being weakly bonded to the ferromagnet, thus minimizing undesirable effects such as interface chemical modification and/or strain coupling. In this work we use first-principles density functional calculations of Co/PVDF heterostructures to demonstrate the effect of ferroelectric polarization of PVDF on the interface magnetocrystalline anisotropy that controls the …