Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

PDF

Robert Streubel Papers

Series

2015

Articles 1 - 6 of 6

Full-Text Articles in Physics

Reconfigurable Large-Area Magnetic Vortex Circulation Patterns, Robert Streubel, Florian Kronast, Ulrich K. Rößler, Oliver G. Schmidt, Denys Makarov Sep 2015

Reconfigurable Large-Area Magnetic Vortex Circulation Patterns, Robert Streubel, Florian Kronast, Ulrich K. Rößler, Oliver G. Schmidt, Denys Makarov

Robert Streubel Papers

Magnetic vortices in nanodots own a switchable circulation sense. These nontrivial magnetization configurations can be arranged into extended and interacting patterns. We have experimentally created large arrays of magnetically reconfigurable vortex patterns in nonplanar honeycomb lattices using particle lithography. Optimizing height asymmetry of the vertices and applying an in-plane magnetic field provide means to switch between homocircular and staggered vortex patterns with a potentially high impact on magnonics and spintronics relying on chiral noncollinear spin textures. To this end, exchange coupling of extended vortex lattices with an out-of-plane magnetized layer allows one to realize artificial skyrmionic core textures with controllable …


Magnetization Dynamics Of Imprinted Non-Collinear Spin Textures, Robert Streubel, Peter Fischer, Martin Kopte, Oliver G. Schmidt, Denys Makarov Sep 2015

Magnetization Dynamics Of Imprinted Non-Collinear Spin Textures, Robert Streubel, Peter Fischer, Martin Kopte, Oliver G. Schmidt, Denys Makarov

Robert Streubel Papers

We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics …


Retrieving Spin Textures On Curved Magnetic Thin Films With Full-Field Soft X-Ray Microscopies, Robert Streubel, Florian Kronast, Peter Fischer, Dula Parkinson, Oliver G. Schmidt, Denys Makarov Jul 2015

Retrieving Spin Textures On Curved Magnetic Thin Films With Full-Field Soft X-Ray Microscopies, Robert Streubel, Florian Kronast, Peter Fischer, Dula Parkinson, Oliver G. Schmidt, Denys Makarov

Robert Streubel Papers

X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue - magnetic X-ray tomography - is yet to be developed. Here we demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. The 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. Using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and …


Magnetic Chiral Spin Textures By Imprinting, Robert Streubel, F. Kronast, U. Rössler, O. G. Schmidt, P. Fischer, D. Makarov Jan 2015

Magnetic Chiral Spin Textures By Imprinting, Robert Streubel, F. Kronast, U. Rössler, O. G. Schmidt, P. Fischer, D. Makarov

Robert Streubel Papers

The unique properties of non-trivial topological states, e.g. magnetic skyrmions [1] may path the way towards novel spintronic devices [2]. However, these spin textures have only been observed in special classes of materials possessing non-centrosymmetric crystal structure [1,3-6] and at low temperatures, which limits their application potential. We offer an alternate route to design synthetic magnetic heterostructures that resemble swirls, vortices or skyrmions with distinct topological charge densities at room temperature. By vertically stacking two magnetic nanopatterns with in-and out-of-plane magnetization and tailoring the interlayer exchange coupling, non-collinear spin textures with tunable topological charge can be imprinted (Fig. 1a).


Manipulating Topological States By Imprinting Non-Collinear Spin Textures, Robert Streubel, Luyang Han, Mi Young Im, Florian Kronast, Ulrich K. Rößler, Florin Radu, Radu Abrudan, Gungun Lin, Oliver G. Schmidt, Peter Fischer, Denys Makarov Jan 2015

Manipulating Topological States By Imprinting Non-Collinear Spin Textures, Robert Streubel, Luyang Han, Mi Young Im, Florian Kronast, Ulrich K. Rößler, Florin Radu, Radu Abrudan, Gungun Lin, Oliver G. Schmidt, Peter Fischer, Denys Makarov

Robert Streubel Papers

Topological magnetic states, such as chiral skyrmions, are of great scientific interest and show huge potential for novel spintronics applications, provided their topological charges can be fully controlled. So far skyrmionic textures have been observed in noncentrosymmetric crystalline materials with low symmetry and at low temperatures. We propose theoretically and demonstrate experimentally the design of spin textures with topological charge densities that can be tailored at ambient temperatures. Tuning the interlayer coupling in vertically stacked nanopatterned magnetic heterostructures, such as a model system of a Co/Pd multilayer coupled to Permalloy, the in-plane non-collinear spin texture of one layer can be …


Magnetic Soft X-Ray Tomography Of Magnetic Swiss Roll Architectures, Robert Streubel, F. Kronast, P. Fischer, O. G. Schmidt, D. Makarov Jan 2015

Magnetic Soft X-Ray Tomography Of Magnetic Swiss Roll Architectures, Robert Streubel, F. Kronast, P. Fischer, O. G. Schmidt, D. Makarov

Robert Streubel Papers

A further increase in performance of state-of-the-art spin-electronics can be achieved by either miniaturizing its functional components or harnessing the third dimension. The first route, however, faces physical limitations as properties of nanostructures and their response to external stimuli can drastically change in reduced dimensions. An alternative way is to go from planar 2D structures to 3D architectures [1]. Such 3D functional elements can be obtained for example by rolling up initially planar strained thin films into Swiss roll like objects with multiple windings (Fig. 1a). A major advantage of this technology platform is the possibility to fabricate compact multifunctional …