Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics

PDF

University of Nebraska - Lincoln

Magnetocrystalline anisotropy

Articles 1 - 4 of 4

Full-Text Articles in Physics

Ferroelectric Polarization Control Of Magnetic Anisotropy In Pbzr0.2ti0.8o3/La0.8sr0.2mno3 Heterostructures, Anil Rajapitamahuni, L. L. Tao, Y. Hao, Jingfeng Song, Xiaoshan Xu, Evgeny Y. Tsymbal, Xia Hong Feb 2019

Ferroelectric Polarization Control Of Magnetic Anisotropy In Pbzr0.2ti0.8o3/La0.8sr0.2mno3 Heterostructures, Anil Rajapitamahuni, L. L. Tao, Y. Hao, Jingfeng Song, Xiaoshan Xu, Evgeny Y. Tsymbal, Xia Hong

Evgeny Tsymbal Publications

The interfacial coupling between the switchable polarization and neighboring magnetic order makes ferroelectric/ferromagnetic composite structures a versatile platform to realize voltage control of magnetic anisotropy. We report the nonvolatile ferroelectric field effect modulation of the magnetocrystalline anisotropy (MCA) in epitaxial PbZr0.2Ti0.8O3 (PZT)/La0.8Sr0.2MnO3 (LSMO) heterostructures grown on (001) SrTiO3 substrates. Planar Hall effect measurements show that the in-plane magnetic anisotropy energy in LSMO is enhanced by about 22% in the hole accumulation state compared to the depletion state, in quantitative agreement with our first-principles density functional theory calculations. Modeling the …


Structure And Magnetism Of Co2ge Nanoparticles, Onur Tosun, Frank M. Abel, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, George C. Hadjipanayis Jan 2019

Structure And Magnetism Of Co2ge Nanoparticles, Onur Tosun, Frank M. Abel, Balamurugan Balasubramanian, Ralph Skomski, David J. Sellmyer, George C. Hadjipanayis

Nebraska Center for Materials and Nanoscience: Faculty Publications

The structural and magnetic properties of Co2Ge nanoparticles (NPs) prepared by the cluster-beam deposition (CBD) technique have been investigated. As-made particles with an average size of 5.5 nm exhibit a mixture of hexagonal and orthorhombic crystal structures. Thermomagnetic measurements showed that the as-made particles are superparamagnetic at room temperature with a blocking temperature (TB) of 20 K. When the particles are annealed at 823 K for 12 h, their size is increased to 13 nm and they develop a new orthorhombic crystal structure, with a Curie temperature (TC) of 815 K. This …


Giant Enhancement Of Magnetic Anisotropy In Ultrathin Manganite Films Via Nanoscale 1d Periodic Depth Modulation, Anil Rajapitamahuni, L. Zhang, Mark A. Koten, V. R. Singh, John D. Burton, Evgeny Y. Tsymbal, Jeffrey E. Shield, Xia Hong May 2016

Giant Enhancement Of Magnetic Anisotropy In Ultrathin Manganite Films Via Nanoscale 1d Periodic Depth Modulation, Anil Rajapitamahuni, L. Zhang, Mark A. Koten, V. R. Singh, John D. Burton, Evgeny Y. Tsymbal, Jeffrey E. Shield, Xia Hong

Evgeny Tsymbal Publications

The relatively low magnetocrystalline anisotropy (MCA) in strongly correlated manganites (La,Sr)MnO3 has been a major hurdle for implementing them in spintronic applications. Here we report an unusual, giant enhancement of in-plane MCA in 6 nm La0.67Sr0.33MnO3 (LSMO) films grown on (001) SrTiO3 substrates when the top 2 nm is patterned into periodic stripes of 100 or 200 nm width. Planar Hall effect measurements reveal an emergent uniaxial anisotropy superimposed on one of the original biaxial easy axes for unpatterned LSMO along (110) directions, with a 50-fold enhanced anisotropy energy density of 5.6 × …


Ferroelectric Control Of Magnetocrystalline Anisotropy At Cobalt/Poly(Vinylidene Fluoride) Interfaces, Pavel Lukashev, Tula R. Paudel, Juan M. López-Encarnación, Shireen Adenwalla, Evgeny Y. Tsymbal, Julian P. Velev Jan 2012

Ferroelectric Control Of Magnetocrystalline Anisotropy At Cobalt/Poly(Vinylidene Fluoride) Interfaces, Pavel Lukashev, Tula R. Paudel, Juan M. López-Encarnación, Shireen Adenwalla, Evgeny Y. Tsymbal, Julian P. Velev

Shireen Adenwalla Papers

Electric field control of magnetization is one of the promising avenues for achieving high-density energy-efficient magnetic data storage. Ferroelectric materials can be especially useful for that purpose as a source of very large switchable electric fields when interfaced with a ferromagnet. Organic ferroelectrics, such as poly(vinylidene fluoride) (PVDF), have an additional advantage of being weakly bonded to the ferromagnet, thus minimizing undesirable effects such as interface chemical modification and/or strain coupling. In this work we use first-principles density functional calculations of Co/PVDF heterostructures to demonstrate the effect of ferroelectric polarization of PVDF on the interface magnetocrystalline anisotropy that controls the …