Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Wave Function Identity: A New Symmetry For 2-Electron Systems In An Electromagnetic Field, Marlina Slamet, Viraht Sahni Oct 2021

Wave Function Identity: A New Symmetry For 2-Electron Systems In An Electromagnetic Field, Marlina Slamet, Viraht Sahni

Publications and Research

Stationary-state Schrödinger-Pauli theory is a description of electrons with a spin moment in an external electromagnetic field. For 2-electron systems as described by the Schrödinger-Pauli theory Hamiltonian with a symmetrical binding potential, we report a new symmetry operation of the electronic coordinates. The symmetry operation is such that it leads to the equality of the transformed wave function to the wave function. This equality is referred to as the Wave Function Identity. The symmetry operation is a two-step process: an interchange of the spatial coordinates of the electrons whilst keeping their spin moments unchanged, followed by an inversion. The Identity …


Superfluid Swimmers, German Kolmakov, Igor S. Aranson Feb 2021

Superfluid Swimmers, German Kolmakov, Igor S. Aranson

Publications and Research

The propulsion of living microorganisms ultimately relies on viscous drag for body-fluid interactions. The self-locomotion in superfluids such as 4He is deemed impossible due to the apparent lack of viscous resistance. Here, we investigate the self-propulsion of a Janus (two-face) light-absorbing particle suspended in superfluid helium 4He (He-II). The particle is energized by the heat flux due to the absorption of light from an external source. We show that a quantum mechanical propulsion force originates due to the transformation of the superfluid to a normal fluid on the heated particle face. The theoretical analysis is supported by the …


Triplet 23S State Of A Quantum Dot In A Magnetic Field: A 'Quantal Newtonian' First Law Study, Marlina Slamet, Viraht Sahni Feb 2021

Triplet 23S State Of A Quantum Dot In A Magnetic Field: A 'Quantal Newtonian' First Law Study, Marlina Slamet, Viraht Sahni

Publications and Research

The triplet 23S state of a 2-electron 2-dimensional quantum dot in a magnetic field is studied via a complementary perspective of Schrödinger-Pauli theory. The perspective is that of the individual electron via its equation of motion or ‘Quantal Newtonian’ first law. According to the law, each electron experiences an external and internal field, the sum of which vanishes. The external field is the sum of the binding and Lorentz fields. The internal field is a sum of the electron-interaction, kinetic, differential density, and internal magnetic fields. The energy is expressed in integral virial form in terms of these …


Transmission Zeros With Topological Symmetry In Complex Systems, Yuhao Kang, Azriel Genack Jan 2021

Transmission Zeros With Topological Symmetry In Complex Systems, Yuhao Kang, Azriel Genack

Publications and Research

Understanding vanishing transmission in Fano resonances in quantum systems and metamaterials and perfect and ultralow transmission in disordered media, has advanced the understanding and applications of wave interactions. Here we use analytic theory and numerical simulations to understand and control the transmission and transmission time in complex systems by deforming a medium and by adjusting the level of gain or loss. Unlike the zeros of the scattering matrix, the position and motion of the zeros of the determinant of the transmission matrix in the complex plane of frequency and field decay rate have robust topological properties. In systems without loss …