Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

PDF

Series

2021

Institution
Keyword
Publication

Articles 1 - 13 of 13

Full-Text Articles in Physics

Computer Program Simulation Of A Quantum Turing Machine With Circuit Model, Shixin Wu Dec 2021

Computer Program Simulation Of A Quantum Turing Machine With Circuit Model, Shixin Wu

Mathematical Sciences Technical Reports (MSTR)

Molina and Watrous present a variation of the method to simulate a quantum Turing machine employed in Yao’s 1995 publication “Quantum Circuit Complexity”. We use a computer program to implement their method with linear algebra and an additional unitary operator defined to complete the details. Their method is verified to be correct on a quantum Turing machine.


Freedom Of Will, Physics, And Human Intelligence: An Idea, Miroslav Svitek, Vladik Kreinovich, Nguyen Hoang Phuong Sep 2021

Freedom Of Will, Physics, And Human Intelligence: An Idea, Miroslav Svitek, Vladik Kreinovich, Nguyen Hoang Phuong

Departmental Technical Reports (CS)

Among the main fundamental challenges related to physics and human intelligence are: How can we reconcile the free will with the deterministic character of physical equations? What is the physical meaning of extra spatial dimensions needed to make quantum physics consistent? and Why are we often smarter than brain-simulating neural networks? In this paper, we show that while each of these challenges is difficult to resolve on its own, it may be possible to resolve all three of them if we consider them together. The proposed possible solution is that human reasoning uses the extra spatial dimensions. This may sound …


The Incubation Effect Among Students Playing An Educational Game For Physics, May Marie P. Talandron-Felipe, Ma. Mercedes T. Rodrigo Jul 2021

The Incubation Effect Among Students Playing An Educational Game For Physics, May Marie P. Talandron-Felipe, Ma. Mercedes T. Rodrigo

Department of Information Systems & Computer Science Faculty Publications

The incubation effect (IE) is a problem-solving phenomenon composed of three phases: pre-incubation where one fails to solve a problem; incubation, a momentary break where time is spent away from the unsolved problem; and post-incubation where the unsolved problem is revisited and solved. Literature on IE was limited to experiments involving traditional classroom activities. This initial investigation showed evidence of IE instances in a computer-based learning environment. This paper consolidates the studies on IE among students playing an educational game called Physics Playground and presents further analysis to examine the incidence of post-incubation or the revisit to a previously unsolved …


Awegnn: Auto-Parametrized Weighted Element-Specific Graph Neural Networks For Molecules., Timothy Szocinski, Duc Duy Nguyen, Guo-Wei Wei Jul 2021

Awegnn: Auto-Parametrized Weighted Element-Specific Graph Neural Networks For Molecules., Timothy Szocinski, Duc Duy Nguyen, Guo-Wei Wei

Mathematics Faculty Publications

While automated feature extraction has had tremendous success in many deep learning algorithms for image analysis and natural language processing, it does not work well for data involving complex internal structures, such as molecules. Data representations via advanced mathematics, including algebraic topology, differential geometry, and graph theory, have demonstrated superiority in a variety of biomolecular applications, however, their performance is often dependent on manual parametrization. This work introduces the auto-parametrized weighted element-specific graph neural network, dubbed AweGNN, to overcome the obstacle of this tedious parametrization process while also being a suitable technique for automated feature extraction on these internally complex …


Knot Theory In Virtual Reality, Donald Lee Price Jul 2021

Knot Theory In Virtual Reality, Donald Lee Price

Masters Theses & Specialist Projects

Throughout the study of Knot Theory, there have been several programmatic solutions to common problems or questions. These solutions have included software to draw knots, software to identify knots, or online databases to look up pre-computed data about knots. We introduce a novel prototype of software used to study knots and links by using Virtual Reality. This software can allow researchers to draw links in 3D, run physics simulations on them, and identify them. This technique has not yet been rigorously explored and we believe it will be of great interest to Knot Theory researchers. The computer code is written …


Rotating Scatter Mask For Directional Radiation Detection And Imaging, Darren Holland, Robert Olesen, Larry Burggraf, Buckley O'Day, James E. Bevins Jun 2021

Rotating Scatter Mask For Directional Radiation Detection And Imaging, Darren Holland, Robert Olesen, Larry Burggraf, Buckley O'Day, James E. Bevins

AFIT Patents

A radiation imaging system images a distributed source of radiation from an unknown direction by rotating a scatter mask around a central axis. The scatter mask has a pixelated outer surface of tangentially oriented, flat geometric surfaces that are spherically varying in radial dimension that corresponds to a discrete amount of attenuation. Rotation position of the scatter mask is tracked as a function of time. Radiation counts from gamma and/or neutron radiation are received from at least one radiation detector that is positioned at or near the central axis. A rotation-angle dependent detector response curve (DRC) is generated based on …


Fuzzy Techniques, Laplace Indeterminacy Principle, And Maximum Entropy Approach Explain Lindy Effect And Help Avoid Meaningless Infinities In Physics, Julio C. Urenda, Sean R. Aguilar, Olga Kosheleva, Vladik Kreinovich May 2021

Fuzzy Techniques, Laplace Indeterminacy Principle, And Maximum Entropy Approach Explain Lindy Effect And Help Avoid Meaningless Infinities In Physics, Julio C. Urenda, Sean R. Aguilar, Olga Kosheleva, Vladik Kreinovich

Departmental Technical Reports (CS)

In many real-life situations, the only information that we have about some quantity S is a lower bound T ≤ S. In such a situation, what is a reasonable estimate for S? For example, we know that a company has survived for T years, and based on this information, we want to predict for how long it will continue surviving. At first glance, this is a type of a problem to which we can apply the usual fuzzy methodology -- but unfortunately, a straightforward use of this methodology leads to a counter-intuitive infinite estimate for S. There is an empirical …


Is Our World Becoming Less Quantum?, Lidice Castro, Vladik Kreinovich May 2021

Is Our World Becoming Less Quantum?, Lidice Castro, Vladik Kreinovich

Departmental Technical Reports (CS)

According to the general idea of quantization, all physical dependencies are only approximately deterministic, and all physical "constants" are actually varying. A natural conclusion -- that some physicists made -- is that Planck's constant (that determines the magnitude of quantum effects) can also vary. In this paper, we use another general physics idea -- the second law of thermodynamics -- to conclude that with time, this constant can only decrease. Thus, with time (we are talking cosmological scales, of course), our world is becoming less quantum.


Implications Of The Quantum Dna Model For Information Sciences, F. Matthew Mihelic Apr 2021

Implications Of The Quantum Dna Model For Information Sciences, F. Matthew Mihelic

Faculty Publications

The DNA molecule can be modeled as a quantum logic processor, and this model has been supported by pilot research that experimentally demonstrated non-local communication between cells in separated cell cultures. This modeling and pilot research have important implications for information sciences, providing a potential architecture for quantum computing that operates at room temperature and is scalable to millions of qubits, and including the potential for an entanglement communication system based upon the quantum DNA architecture. Such a system could be used to provide non-local quantum key distribution that could not be blocked by any shielding or water depth, would …


Lecture 12: Recent Advances In Time Integration Methods And How They Can Enable Exascale Simulations, Carol S. Woodward Apr 2021

Lecture 12: Recent Advances In Time Integration Methods And How They Can Enable Exascale Simulations, Carol S. Woodward

Mathematical Sciences Spring Lecture Series

To prepare for exascale systems, scientific simulations are growing in physical realism and thus complexity. This increase often results in additional and changing time scales. Time integration methods are critical to efficient solution of these multiphysics systems. Yet, many large-scale applications have not fully embraced modern time integration methods nor efficient software implementations. Hence, achieving temporal accuracy with new and complex simulations has proved challenging. We will overview recent advances in time integration methods, including additive IMEX methods, multirate methods, and parallel-in-time approaches, expected to help realize the potential of exascale systems on multiphysics simulations. Efficient execution of these methods …


Quantum Simulation Of Schrödinger's Equation, Mohamed Eltohfa Mar 2021

Quantum Simulation Of Schrödinger's Equation, Mohamed Eltohfa

Capstone and Graduation Projects

Quantum computing is one of the promising active areas in physics research. This is because of the potential of quantum algorithms to outperform their classical counterparts. Grover’s search algorithm has a quadratic speed-up compared to the classical linear search. The quantum simulation of Schrödinger’s equation has an exponential memory save-up compared to the classical simulation. In this thesis, the ideas and tools of quantum computing are reviewed. Grover’s algorithm is studied and simulated as an example. Using the Qiskit quantum computing library, a code to simulate Schrödinger’s equation for a particle in one dimension is developed, simulated locally, and run …


Computation And Data Driven Discovery Of Topological Phononic Materials, Jiangxu Li, Jiaxi Liu, Stanley A. Baronett, Mingfeng Liu, Lei Wang, Ronghan Li, Yun Chen, Dianzhong Li, Qiang Zhu, Xing Qiu Chen Feb 2021

Computation And Data Driven Discovery Of Topological Phononic Materials, Jiangxu Li, Jiaxi Liu, Stanley A. Baronett, Mingfeng Liu, Lei Wang, Ronghan Li, Yun Chen, Dianzhong Li, Qiang Zhu, Xing Qiu Chen

Physics & Astronomy Faculty Research

© 2021, The Author(s). The discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological phononics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 real materials. We have discovered 5014 TP materials and grouped them into two main classes of Weyl and nodal-line (ring) TPs. We have clarified the physical mechanism for the occurrence of single Weyl, high degenerate Weyl, individual nodal-line (ring), nodal-link, nodal-chain, …


Combining Cryo-Em Density Map And Residue Contact For Protein Secondary Structure Topologies, Maytha Alshammari, Jing He Jan 2021

Combining Cryo-Em Density Map And Residue Contact For Protein Secondary Structure Topologies, Maytha Alshammari, Jing He

Computer Science Faculty Publications

Although atomic structures have been determined directly from cryo-EM density maps with high resolutions, current structure determination methods for medium resolution (5 to 10 Å) cryo-EM maps are limited by the availability of structure templates. Secondary structure traces are lines detected from a cryo-EM density map for α-helices and β-strands of a protein. A topology of secondary structures defines the mapping between a set of sequence segments and a set of traces of secondary structures in three-dimensional space. In order to enhance accuracy in ranking secondary structure topologies, we explored a method that combines three sources of information: a set …