Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Monitoring And Identifying The Rhodamine 6g-Hydroxide Ion Reaction Using In-Situ, Surface-Enhanced Raman Spectroscopy, Ryan Lamb Apr 2020

Monitoring And Identifying The Rhodamine 6g-Hydroxide Ion Reaction Using In-Situ, Surface-Enhanced Raman Spectroscopy, Ryan Lamb

Masters Theses & Specialist Projects

An effective method for monitoring chemical reactions is necessary to better understand their mechanisms and kinetics. Effective reaction monitoring requires a spectroscopy technique with fast data acquisition, high sensitivity, structure-to-spectrum correlation, and low solvent interference. Surface-enhanced Raman spectroscopy (SERS) provides these features, which makes it a valuable tool for monitoring reactions. To obtain the Raman enhancement, metallic nanostructures typically made of silver or gold are aggregated using a salt. The nanoparticles aggregates must then be stabilized using a surfactant to use this method in situ due to eventual nanoparticle precipitation. In this study, gold nanoparticles stabilized with sodium dodecyl sulfate …


Novel Integrated Nano-Sensors For Analysis Of Chemical Compounds In Natural Gas Applications, Taylor Robinson Jan 2020

Novel Integrated Nano-Sensors For Analysis Of Chemical Compounds In Natural Gas Applications, Taylor Robinson

Mahurin Honors College Capstone Experience/Thesis Projects

Semiconductor sensors have been important environmental gas detectors since the 1990s, and are commonly used to detect hydrogen, oxygen, alcohol vapor, and even harmful gases such as carbon monoxide. A gas chromatography approach is a well-proven and compact separation technique to identify and quantify multiple compounds in a complex background such as a true natural gas environment. Real time field monitoring implementing classical GC and standard sensors (FID, PID, etc.) have a lot of limitations due to its bulky size, heavy weight, and high maintenance. In this study, we developed a portable instrument through the utilization of novel solid-state sensors …