Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Instrumentation For Cryogenic Dynamic Nuclear Polarization And Electron Decoupling In Rotating Solids, Faith Joellen Scott Aug 2018

Instrumentation For Cryogenic Dynamic Nuclear Polarization And Electron Decoupling In Rotating Solids, Faith Joellen Scott

Arts & Sciences Electronic Theses and Dissertations

Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) using the higher polarization of electron radical spins compared to nuclear spins. The addition of electron radicals for DNP to the sample can cause hyperfine broadening, which decreases the resolution of the NMR resonances due to hyperfine interactions between electron and nuclear spins. Electron decoupling has been shown to attenuate the effects of hyperfine coupling in rotating solids. Magic angle spinning (MAS) DNP with electron decoupling requires a high electron Rabi frequency provided by a high-power microwave source such as a frequency-agile gyrotron. This dissertation describes the development …


Spin Alignment Generated In Inelastic Nuclear Reactions, Daniel Hoff Aug 2018

Spin Alignment Generated In Inelastic Nuclear Reactions, Daniel Hoff

Arts & Sciences Electronic Theses and Dissertations

The spin alignment of inelastically excited 7Li projectiles, when the target remains in its ground state, was determined through angular-correlation measurements between the breakup fragments of 7Li_ (_ + t). It was found that 7Li_ is largely aligned along the beam axis (longitudinal) in this type of inelastic reaction, regardless of the target. This longitudinal alignment is well described by DWBA calculations, which can be explained by an angular-momentum-excitation-energy mismatch condition. These calculations also explain the longitudinal spin alignment of excited nuclei in several other systems, showing the phenomenon is more general. The experiment involving 7Li was performed at the …


Super‐Resolution Imaging Of Amyloid Structures Over Extended Times By Using Transient Binding Of Single Thioflavin T Molecules, Kevin Spehar, Tianben Ding, Yuanzi Sun, Niraja Kedia, Jin Lu, George R. Nahass, Matthew D. Lew, Jan Bieschke Jun 2018

Super‐Resolution Imaging Of Amyloid Structures Over Extended Times By Using Transient Binding Of Single Thioflavin T Molecules, Kevin Spehar, Tianben Ding, Yuanzi Sun, Niraja Kedia, Jin Lu, George R. Nahass, Matthew D. Lew, Jan Bieschke

Electrical & Systems Engineering Publications and Presentations

Oligomeric amyloid structures are crucial therapeutic targets in Alzheimer's and other amyloid diseases. However, these oligomers are too small to be resolved by standard light microscopy. We have developed a simple and versatile tool to image amyloid structures by using thioflavin T without the need for covalent labeling or immunostaining. The dynamic binding of single dye molecules generates photon bursts that are used for fluorophore localization on a nanometer scale. Thus, photobleaching cannot degrade image quality, allowing for extended observation times. Super‐resolution transient amyloid binding microscopy promises to directly image native amyloid by using standard probes and record amyloid dynamics …