Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

University of Nebraska at Omaha

Cubic Zr Sublattice

Articles 1 - 1 of 1

Full-Text Articles in Physics

Local Structures Surrounding Zr In Nanostructurally Stabilized Cubic Zirconia: Structural Origin Of Phase Stability, Y. L. Soo, P. J. Chen, S. H. Huang, T. J. Shiu, T Y. Tsai, Y. H. Chow, Y. C. Lin, S. C, Weng, S. L. Chang, G. Wang, Chin Li Cheung, Renat F. Sabirianov, Wai-Ning Mei, Fereydoon Namavar, Hani Haider, Kevin L. Garvin, J. F. Lee, H. Y. Lee, P. P. Chu Jan 2008

Local Structures Surrounding Zr In Nanostructurally Stabilized Cubic Zirconia: Structural Origin Of Phase Stability, Y. L. Soo, P. J. Chen, S. H. Huang, T. J. Shiu, T Y. Tsai, Y. H. Chow, Y. C. Lin, S. C, Weng, S. L. Chang, G. Wang, Chin Li Cheung, Renat F. Sabirianov, Wai-Ning Mei, Fereydoon Namavar, Hani Haider, Kevin L. Garvin, J. F. Lee, H. Y. Lee, P. P. Chu

Physics Faculty Publications

Local environment surrounding Zr atoms in the thin films of nanocrystalline zirconia (ZrO2) has been investigated by using the extended x-ray absorption fine structure (EXAFS) technique. These films prepared by the ion beam assisted deposition exhibit long-range structural order of cubic phase and high hardness at room temperature without chemical stabilizers. The local structure around Zr probed by EXAFS indicates a cubic Zr sublattice with O atoms located on the nearest tetragonal sites with respect to the Zr central atoms, as well as highly disordered locations. Similar Zr local structure was also found in a ZrO2 nanocrystal …