Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Development Of Antibacterial Neural Stimulation Electrodes Via Hierarchical Surface Restructuring And Atomic Layer Deposition., Henna Khosla, Wesley Seche, Daniel Ammerman, Sahar Elyahoodayan, Gregory A. Caputo, Jeffrey Hettinger, Shahram Amini, Gang Feng Nov 2023

Development Of Antibacterial Neural Stimulation Electrodes Via Hierarchical Surface Restructuring And Atomic Layer Deposition., Henna Khosla, Wesley Seche, Daniel Ammerman, Sahar Elyahoodayan, Gregory A. Caputo, Jeffrey Hettinger, Shahram Amini, Gang Feng

Faculty Scholarship for the College of Science & Mathematics

Miniaturization and electrochemical performance enhancement of electrodes and microelectrode arrays in emerging long-term implantable neural stimulation devices improves specificity, functionality, and performance of these devices. However, surgical site and post-implantation infections are amongst the most devastating complications after surgical procedures and implantations. Additionally, with the increased use of antibiotics, the threat of antibiotic resistance is significant and is increasingly being recognized as a global problem. Therefore, the need for alternative strategies to eliminate post-implantation infections and reduce antibiotic use has led to the development of medical devices with antibacterial properties. In this work, we report on the development of electrochemically …


Ultrasound-Assisted Air-Jet Spinning Of Silk Fibroin-Soy Protein Nanofiber Composite Biomaterials., Futian Yang, Fang Wang, Janine Mazahreh, Xiao Hu Feb 2023

Ultrasound-Assisted Air-Jet Spinning Of Silk Fibroin-Soy Protein Nanofiber Composite Biomaterials., Futian Yang, Fang Wang, Janine Mazahreh, Xiao Hu

Faculty Scholarship for the College of Science & Mathematics

Ultrasound utilizes a non-radiation technology that can meet modern standards to gain access to cheap, reliable and sustainable modern energy. Ultrasound technology can be implemented in the field of biomaterials for its exceptional potential in controlling the shape of nanomaterials. This study presents the first example of the production of soy and silk fibroin protein composite nanofibers in various ratios via combining ultrasonic technology with air-spray spinning. Characterization of ultrasonic spun nanofibers was performed by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric (TG) analysis, water contact angle, water retention, enzymatic …