Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

Large Scale Brownian Dynamics Simulation Of Dilute And Semidilute Polymeric Solutions, Amir Saadat Dec 2016

Large Scale Brownian Dynamics Simulation Of Dilute And Semidilute Polymeric Solutions, Amir Saadat

Doctoral Dissertations

Excluded Volume (EV) and Hydrodynamic Interactions (HI) play a central role in static and dynamic properties of macromolecules in solution under equilibrium and nonequilibrium settings. The computational cost of incorporating HI in mesoscale Brownian dynamics (BD) simulations, particularly in the semidilute regime has motivated significant research aimed at development of high-fidelity and efficient techniques.

In this study, I have developed several algorithms for the mesoscale bead-spring representation of a macromolecular solution in dilute and semidilute regimes. The Krylov subspace method enables fast calculation of single chain dynamics with simulation time scaling of O(Nb2) [order N …


Kinetics And Dynamics Of Electrophoretic Translocation Of Polyelectrolytes Through Nanopores, Harshwardhan Katkar Nov 2016

Kinetics And Dynamics Of Electrophoretic Translocation Of Polyelectrolytes Through Nanopores, Harshwardhan Katkar

Doctoral Dissertations

The idea of sequencing a DNA based on single-file translocation of the DNA through nanopores under the action of an electric field has received much attention over the past two decades due to the societal need for low cost and high-throughput sequencing. However, due to the high speed of translocation, interrogating individual bases with an acceptable signal to noise ratio as they traverse the pore has been a major problem. Experimental facts on this phenomenon are rich and the associated phenomenology is yet to be fully understood. This thesis focuses on understanding the underlying principles of polymer translocation, with an …


Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem Nov 2016

Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem

Doctoral Dissertations

Fuel cells are one of the oldest sustainable energy generation devices, converting chemical energy into electrical energy via reverse-electrolysis reactions. With the rapid development of polymer science, solid polymer electrolyte (SPE) membranes replaced the conventional liquid ion transport media, rendering low-temperature fuel cells more accessible for applications in portable electronics and transportation. However, SPE fuel cells are still far from commercialization due to high operation cost, and insufficient lifetime and performance limitations. Anion exchange membrane fuel cells (AEMFCs) are inexpensive alternatives to current proton exchange membrane fuel cell (PEMFC) technology, which relies on utilizing expensive noble-metal catalysts and perfluorinated SPE …


Development Of Ultrasonic Techniques For Characterization Of Liquid Mixtures, William A. Cooke Sep 2016

Development Of Ultrasonic Techniques For Characterization Of Liquid Mixtures, William A. Cooke

Electronic Thesis and Dissertation Repository

To evaluate the suitability of ultrasonic techniques for on-line process monitoring applications, an ultrasonic probe was used to measure acoustic velocity, acoustic impedance, and isentropic compressibility of hydrocarbons (including n-, iso-, and cycloalkanes, toluene, mineral oil, and crude oil) and polar liquids (alcohols, water, salt water) over a temperature range of 25-60°C. Temperature, carbon chain length, molecular shape, and intermolecular forces had significant effects on ultrasonic parameters. Relationships between media characteristics and observed ultrasonic parameters were modeled using empirical-least squares equations. The same parameters were measured in binary mixtures of hydrocarbons in heptane, as well as polar liquids in ethanol. …


Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang Jul 2016

Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang

Doctoral Dissertations

As alkaline anion exchange membrane fuel cells (AAEMFC) are regarded as promising and important energy devices, the development of high performance anion exchange membranes are in urgent need, as well as fundamental investigation on the structure-property relationship, which are the motivation of this dissertation. Three different polymer systems are presented and focused on polymer synthesis, material morphology, and ion transport phenomena. Crosslinked membranes are promising as practical materials, however, the understanding and further improvement of its performance is hindered by the lack of an ordered morphology or well-defined chemical structure. In Chapter 2, a series of crosslinked membranes were design …


Gasoline Confined In Nano-Porous Media, Matthew Giso Jun 2016

Gasoline Confined In Nano-Porous Media, Matthew Giso

Honors Theses

The heat of combustion was determined for gasoline confined in nano-porous media of differing pore size by bomb calorimetry. The heat of combustion of the confined fuels was comparable to that of bulk within the experimental uncertainty. This suggests that all of the confined fuel burns without any flame quenching and no chemical interactions at the interface between pore walls and fuel mitigate combustion.


Atomic Force Microscopy Of Poly(Ethylane-Oxide) Crystalization, Xavier Capaldi Jun 2016

Atomic Force Microscopy Of Poly(Ethylane-Oxide) Crystalization, Xavier Capaldi

Honors Theses

Polymer crystallization is a complex process which is influenced by a variety of factors. Atomic force microscopy is used to explore the material properties of polymer crystals. Poly(ethylene-oxide) is used in a variety of molecular weights as the sample. In addition, a variety of sample preparation methods and microscopy modes were tested. A relatively new imaging technique was identified for the characterization of polymer crystals: amplitude modulation-frequency modulation viscoelastic mapping. This mode was used to measure material properties such as stiffness and dissipation.


Nano-Photonic Waveguides For Chemical And Biomedical Sensing, Surya Venkatasekhar Cheemalapati May 2016

Nano-Photonic Waveguides For Chemical And Biomedical Sensing, Surya Venkatasekhar Cheemalapati

USF Tampa Graduate Theses and Dissertations

In this dissertation, advances in the fields of Photonics, and Plasmonics, and specifically, single cell analysis and waveguide sensing will be addressed. The first part of the dissertation is on Finite Difference Time Domain (FDTD) optimization and experimental demonstration of a nano-scale instrument that allows sensing at the cellular and subcellular levels. A new design of plasmonic coupler into a nanoscale waveguide is proposed and optimized using FDTD simulations. Following this, a subcellular nanoendoscope that can locally excite fluorescence in labelled cell organelles and collect the emitted fluorescent light for detailed spectrum analysis is fabricated and tested. The nanoendoscope has …


Particle Image Velocimetry Design & Installation, Zach Ritchie May 2016

Particle Image Velocimetry Design & Installation, Zach Ritchie

Mechanical Engineering Undergraduate Honors Theses

This work will mainly focus on the design, construction, and installation of the Particle Image Velocimetry (PIV) system in the Chemical Hazards Research Center wind tunnel. The PIV system utilizes a Class IV (double pulsed) laser, optics to produce a light sheet, timing circuitry, and a high-resolution camera (with buffered output) to measure a system’s velocity (two-dimensional) field by determining the displacement of particles over the time between laser pulses. For maximum mobility and functionality, the PIV system was installed in the center of the tunnel on a moveable cart with the laser and camera mounted to an adjustable support. …


Voltage Driven Translocation Of Polyelectrolytes Through Nanopores, Byoung-Jin Jeon Mar 2016

Voltage Driven Translocation Of Polyelectrolytes Through Nanopores, Byoung-Jin Jeon

Doctoral Dissertations

Recently, translocations of polyelectrolyte molecules through membrane channel protein pores or solid-state nanopores have been actively studied. Although the polymer translocation researches emerged mainly due to technological demands in terms of genome sequencing, the detailed physics of the single molecule transport through a narrow channel remains fully understood. To obtain further understanding of common features of the translocation process, this thesis focuses on the effects of salt concentration, pore-polymer electrostatic interactions, and externally applied electric field on the voltage-driven polymer translocations. The study is carried out by performing a series of systematically designed experiments using alpha-hemolysin (αHL) protein pore to …


Force Field Development With Gomc A Fast New Monte Carlo Molecular Simulation Code, Jason Richard Mick Jan 2016

Force Field Development With Gomc A Fast New Monte Carlo Molecular Simulation Code, Jason Richard Mick

Wayne State University Dissertations

In this work GOMC (GPU Optimized Monte Carlo) a new fast, flexible, and free molecular Monte Carlo code for the simulation atomistic chemical systems is presented. The results of a large Lennard-Jonesium simulation in the Gibbs ensemble is presented. Force fields developed using the code are also presented. To fit the models a quantitative fitting process is outlined using a scoring function and heat maps. The presented n-6 force fields include force fields for noble gases and branched alkanes. These force fields are shown to be the most accurate LJ or n-6 force fields to date for these compounds, capable …