Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Mechanisms Of Emulsion Destabilization: An Investigation Of Surfactant, Stabilizer, And Detergent Based Formulations Using Diffusing Wave Spectroscopy, Jordan N. Nowaczyk Jan 2023

Mechanisms Of Emulsion Destabilization: An Investigation Of Surfactant, Stabilizer, And Detergent Based Formulations Using Diffusing Wave Spectroscopy, Jordan N. Nowaczyk

Theses and Dissertations

Conventional approaches for studying emulsions, such as microscopy and macroscopic phase tracking, present challenges when it comes to establishing detailed mechanistic descriptions of the impact of emulsifier and stabilizer additives. Additionally, while a combination of sizing methods and macroscopic phase tracking can provide insights into droplet size changes and concentration, the use of multiple measurements can be cumbersome and error-prone. It is the focus of this work, to present a new method for studying water in oil (W/O) emulsions that involves using diffusing wave spectroscopy (DWS) to examine the impact of three different surface stabilizing additives at varying concentrations. By …


Scaling Film Cooling Adiabatic Effectiveness With Mass Transfer And Thermal Experimental Techniques, Luke J. Mcnamara Mar 2019

Scaling Film Cooling Adiabatic Effectiveness With Mass Transfer And Thermal Experimental Techniques, Luke J. Mcnamara

Theses and Dissertations

With increasing engine temperatures, it is becoming more important to design effective film cooling schemes. Low temperature, large scale tests are often implemented in the design process to reduce cost and complexity. A nondimensional adiabatic effectiveness can be used as an indication of the performance of a film cooling scheme. However, the coolant flow rate must be properly scaled between the low temperature tests and engine temperatures to accurately predict film cooling effectiveness. This process is complicated by gas property variation with temperature. Tests are commonly conducted using thermal measurement techniques with infrared thermography (IR), but the use of pressure …


Examination Of Flow Dynamics And Passive Cooling In An Ultra Compact Combustor, Tylor C. Rathsack Mar 2019

Examination Of Flow Dynamics And Passive Cooling In An Ultra Compact Combustor, Tylor C. Rathsack

Theses and Dissertations

The Ultra Compact Combustor (UCC) promises to greatly reduce the size of a gas turbine engine’s combustor by altering the manner in which fuel is burnt. Differing from the common axial flow combustor, the UCC utilizes a rotating flow, coaxial to the engine’s primary axis, in an outboard circumferential cavity as the primary combustion zone. The present study investigates two key UCC facets required to further this combustor design. The first area of investigation is cooling of the Hybrid Guide Vane (HGV). This UCC specific hardware acts as a combustor center body that alters the exit flow angle and acts …


Demonstration Of A Strategy To Perform Two-Dimensional Diode Laser Tomography, Ryan N. Givens Mar 2008

Demonstration Of A Strategy To Perform Two-Dimensional Diode Laser Tomography, Ryan N. Givens

Theses and Dissertations

Demonstration of a strategy to perform two-dimensional diode laser tomography using a priori knowledge from symmetry arguments and computational fluid dynamic (CFD) calculations is presented for a flat flame burner. The strategy uses an optimization technique to determine flame diameter and location using a vector quantization approach. Next, the variance in a training set, produced from CFD calculations, is captured using principal components analysis. The information in the training set allows interpolation between beam paths resulting in temperature and density maps. Finally, the TDLAS temperature and density maps are shown to agree with traditional thermocouple measurements of the flat flame …


A Rapidly-Converging Alternative To Source Iteration For Solving The Discrete Ordinates Radiation Transport Equations In Slab Geometry, Nicholas J. Wager Mar 2004

A Rapidly-Converging Alternative To Source Iteration For Solving The Discrete Ordinates Radiation Transport Equations In Slab Geometry, Nicholas J. Wager

Theses and Dissertations

I present a numerical technique to solve the time independent Boltzmann Transport Equation for the transport of neutrons and photons. The technique efficiently solves the discrete ordinates equations with a new iteration scheme. I call this new scheme the angle space distribution iteration method because it combines a non-linear, high angular-resolution flux approximation within individual spatial cells with a coarse angular-resolution flux approximation that couples all cells in a spatial mesh. This shown to be an efficient alternative to source iteration. The new method is implemented using the step characteristic and exponential characteristic spatial quadrature schemes. The latter was introduced …