Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Microfluidic Study Of Gravity-Driven Drainage And Coalescence Of Aqueous Two Dimensional Foams, Justin D. Heftel Jan 2019

Microfluidic Study Of Gravity-Driven Drainage And Coalescence Of Aqueous Two Dimensional Foams, Justin D. Heftel

Dissertations and Theses

Foams, a two-phase dispersion, are staples of the cosmetic, personal care, petroleum, pharmaceutical, and other industries. Central to these applications is the stability of the dispersion against separation. Foams break down by two mechanisms: the first is bubble coalescence, which is driven by the gravity drainage of the continuous phase. The drainage acts to push the bubbles against each other, and leads to the formation of thin lamellae, which break and cause the coalescence. The second is the mass transfer of the dispersed phase through the continuous phase, which is caused by the difference in pressures between the bubbles and …


Developing A 3d In Vitro Model By Microfluidics, Hung-Ta Chien Jan 2018

Developing A 3d In Vitro Model By Microfluidics, Hung-Ta Chien

Dissertations and Theses

In vitro tissue models play an important role in providing a platform that mimics the realistic tissue microenvironment for stimulating and characterizing the cellular behavior. In particular, the hydrogel-based 3D in vitro models allow the cells to grow and interact with their surroundings in all directions, thus better mimicking in vivo than their 2D counterparts. The objective of this thesis is to establish a 3D in vitro model that mimics the anatomical and functional complexity of the realistic cancer microenvironment for conveniently studying the transport coupling in porous tissue structures. We pack uniform-sized PEGDA-GelMA microgels in a microfluidic chip to …


Enzymatically Active Microspheres For Self-Propelled Colloidal Engines, Jungeun Park Jan 2017

Enzymatically Active Microspheres For Self-Propelled Colloidal Engines, Jungeun Park

Dissertations and Theses

Micro- and nano-motors have attracted numerous attentions from various scientific areas due to their potential applications. Most studies on self-propelled colloidal engines have exploited catalytic decomposition of hydrogen peroxide to drive the motor. Since the hydrogen peroxide is caustic, it is not suitable to use in biological applications, encouraging people to develop “greener” fuels. The aim of this research is to study a new transduction mechanism for self-propulsion not tied to hydrogen peroxide, and which can in particular be used with biological molecules as fuels. In this study, we focus on making particles with enzymatic activity which can effectively decompose …


An Experimental Investigation Of The Finite Time Efficiency Of A Peltier Refrigeration Device, Thomas Schneider Aug 1991

An Experimental Investigation Of The Finite Time Efficiency Of A Peltier Refrigeration Device, Thomas Schneider

Dissertations and Theses

Since the need of energy conservation has become more and more urgent in the past decades, there has been an increased interest in the study and development of more efficient energy conversion systems. One of the fields that have arisen from that endeavor is a branch of physics called Finite Time Thermodynamics (FIT). It may be said that FIT was initiated through the famous paper by Curzon and Ahlborn (1975) that established new bounds on the efficiency of a finite time Carnot heat engine. Before, the traditional treatments gave a fundamental upper limit on the efficiency of any heat engine. …