Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Microstructure-Based Modeling Of Primary Cilia Mechanics, Nima Mostafazadeh, Andrew Resnick, Y.-N. Young, Zhangli Peng Jan 2024

Microstructure-Based Modeling Of Primary Cilia Mechanics, Nima Mostafazadeh, Andrew Resnick, Y.-N. Young, Zhangli Peng

Physics Faculty Publications

A primary cilium, made of nine microtubule doublets enclosed in a cilium membrane, is a mechanosensing organelle that bends under an external mechanical load and sends an intracellular signal through transmembrane proteins activated by cilium bending. The nine microtubule doublets are the main load-bearing structural component, while the transmembrane proteins on the cilium membrane are the main sensing component. No distinction was made between these two components in all existing models, where the stress calculated from the structural component (nine microtubule doublets) was used to explain the sensing location, which may be totally misleading. For the first time, we developed …


Monitoring Stem Cell Differentiation Using Raman Microspectroscopy: Chondrogenic Differentiation, Towards Cartilage Formation, Francesca Ravera, Esen Efeoglu, Hugh Byrne Jan 2021

Monitoring Stem Cell Differentiation Using Raman Microspectroscopy: Chondrogenic Differentiation, Towards Cartilage Formation, Francesca Ravera, Esen Efeoglu, Hugh Byrne

Articles

Mesenchymal Stem Cells (MSCs) have the ability to differentiate into chondrocytes, the only cellular components of cartilage and are therefore ideal candidates for cartilage and tissue repair technologies. Chondrocytes are surrounded by cartilage-like extracellular matrix (ECM), a complex network rich in glycosaminoglycans, proteoglycans, and collagen, which, together with a multitude of intracellular signalling molecules, trigger the chondrogenesis and allow the chondroprogenitor to acquire the spherical morphology of the chondrocytes. However, although the mechanisms of the differentiation of MSCs have been extensively explored, it has been difficult to provide a holistic picture of the process, in situ. Raman Micro Spectroscopy (RMS) …


The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi Jan 2021

The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

This paper reviews the principles behind the design and operation of the resistive barrier discharge, a low temperature plasma source that operates at atmospheric pressure. One of the advantages of this plasma source is that it can be operated using either DC or AC high voltages. Plasma generated by the resistive barrier discharge has been used to efficiently inactivate pathogenic microorganisms and to destroy cancer cells. These biomedical applications of low temperature plasma are of great interest because in recent times bacteria developed increased resistance to antibiotics and because present cancer therapies often are accompanied by serious side effects. Low …


9th Annual Postdoctoral Science Symposium, University Of Texas Md Anderson Cancer Center Postdoctoral Association Sep 2019

9th Annual Postdoctoral Science Symposium, University Of Texas Md Anderson Cancer Center Postdoctoral Association

Annual Postdoctoral Science Symposium Abstracts

The mission of the Annual Postdoctoral Science Symposium (APSS) is to provide a platform for talented postdoctoral fellows throughout the Texas Medical Center to present their work to a wider audience. The MD Anderson Postdoctoral Association convened its inaugural Annual Postdoctoral Science Symposium (APSS) on August 4, 2011.

The APSS provides a professional venue for postdoctoral scientists to develop, clarify, and refine their research as a result of formal reviews and critiques of faculty and other postdoctoral scientists. Additionally, attendees discuss current research on a broad range of subjects while promoting academic interactions and enrichment and developing new collaborations.


Inactivation Of Myeloma Cancer Cells By Helium And Argon Plasma Jets: The Effect Comparison And The Key Reactive Species, Zeyu Chen, Qingjie Cui, Chen Chen, Dehui Xu, Dingxin Liu, H. L. Chen, Michael G. Kong Feb 2018

Inactivation Of Myeloma Cancer Cells By Helium And Argon Plasma Jets: The Effect Comparison And The Key Reactive Species, Zeyu Chen, Qingjie Cui, Chen Chen, Dehui Xu, Dingxin Liu, H. L. Chen, Michael G. Kong

Bioelectrics Publications

In plasma cancer therapy, the inactivation of cancer cells under plasma treatment is closely related to the reactive oxygen and nitrogen species (RONS) induced by plasmas. Quantitative study on the plasma-induced RONS that related to cancer cells apoptosis is critical for advancing the research of plasma cancer therapy. In this paper, the effects of several reactive species on the inactivation of LP-1 myeloma cancer cells are comparatively studied with variable working gas composition, surrounding gas composition, and discharge power. The results show that helium plasma jet has a higher cell inactivation efficiency than argon plasma jet under the same discharge …


The Bio-Nano-Interface In Predicting Nanoparticle Fate And Behaviour In Living Organisms: Towards Grouping And Categorising Nanomaterials And Ensuring Nanosafety By Design, Hugh Byrne, Arti Ahluwalia, Diana Boraschi,, Bengt Fadeel, Peter Gehr, Arno C. Gutleb, Michaela Kendall, Manthos Papadopoulos, Iseult Lynch Jan 2013

The Bio-Nano-Interface In Predicting Nanoparticle Fate And Behaviour In Living Organisms: Towards Grouping And Categorising Nanomaterials And Ensuring Nanosafety By Design, Hugh Byrne, Arti Ahluwalia, Diana Boraschi,, Bengt Fadeel, Peter Gehr, Arno C. Gutleb, Michaela Kendall, Manthos Papadopoulos, Iseult Lynch

Articles

In biological media, nanoparticles acquire a coating of biomolecules (proteins, lipids, polysaccharides) from their surroundings, which reduces their surface energy and confers a biological identity to the particles. This adsorbed layer is the interface between the nanomaterial and living systems and therefore plays a significant role in determining the fate and behaviour of the nanoparticles. This review summarises the state of the art in terms of understanding the bio-nano interface and provides direction for potential future research directions and some recommendations for future priorities and strategies to support the safe implementation of nanotechnologies. The central premise is that nanomaterials must …


Spectral Cross Correlation As A Supervised Approach For The Analysis Of Complex Raman Datasets: The Case Of Nanoparticles In Biological Cells, Mark Keating, Franck Bonnier, Hugh Byrne Oct 2012

Spectral Cross Correlation As A Supervised Approach For The Analysis Of Complex Raman Datasets: The Case Of Nanoparticles In Biological Cells, Mark Keating, Franck Bonnier, Hugh Byrne

Articles

Spectral Cross-correlation is introduced as a methodology to identify the presence and subcellular distribution of nanoparticles in cells. Raman microscopy is employed to spectroscopically image biological cells previously exposed to polystyrene nanoparticles, as a model for the study of nano-bio interactions. The limitations of previously deployed strategies of K-means clustering analysis and principal component analysis are discussed and a novel methodology of Spectral Cross Correlation Analysis is introduced and compared with the performance of Classical Least Squares Analysis, in both unsupervised and supervised modes. The previous study demonstrated the feasibility of using Raman spectroscopy to map cells and identify polystyrene …


Potential Of Vibrational Spectroscopy In The Diagnosis Of Human Tumours., Eoghan O'Faolain Jan 2006

Potential Of Vibrational Spectroscopy In The Diagnosis Of Human Tumours., Eoghan O'Faolain

Doctoral

Just fewer than 20,000 people are annually diagnosed with some form of cancer in Ireland and one in three people are likely to contract some form of cancer by age 74. With the number of cases increasing at an annual rate of 2%, the early detection and treatment of cancer is becoming increasingly important. Both IR and Raman spectroscopy offer the potential for real time, quantitative detection of cancer and even precancer. This study investigates the potential of Raman and Fourier transform infrared, both benchtop and synchrotron spectroscopies for the detection of cervical cancer. The tissue was classified and its …


Confocal Microscopy: A Powerful Tool For Biological Research, Amit Singh, K. P. Gopinathan May 1998

Confocal Microscopy: A Powerful Tool For Biological Research, Amit Singh, K. P. Gopinathan

Biology Faculty Publications

Conventional light microscopy allows the observation of living as well as fixed cells and tissues to generate two-dimensional images. The out-of-focus information often obscures the ultrastructural details, especially in thick specimens with overlapping structures. The earliest available light microscopy visualized the objects in hydrated state in two-dimensions during their temporal development. The emergence of electron microscopy (EM) provided superb resolution of ultrastructural details, but it was applicable only for objects in the dehydrated state and thereby potentially introducing handling artifacts. The usefulness of optical methods, however, has been limited by the poor depth discrimination. Often, the fluorescence and reflectance images …