Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Symmetry And Reconstruction Of Particle Structure From Random Angle Diffraction Patterns, Sandi Wibowo Dec 2016

Symmetry And Reconstruction Of Particle Structure From Random Angle Diffraction Patterns, Sandi Wibowo

Theses and Dissertations

The problem of determining the structure of a biomolecule, when all the evidence from experiment consists of individual diffraction patterns from random particle orientations, is the central theoretical problem with an XFEL. One of the methods proposed is a calculation over all measured diffraction patterns of the average angular correlations between pairs of points on the diffraction patterns. It is possible to construct from these a matrix B characterized by angular momentum quantum number l, and whose elements are characterized by radii q and q’ of the resolution shells. If matrix B is considered as dot product of vectors, which …


Actin-Based Feedback Circuits In Cell Migration And Endocytosis, Xinxin Wang Aug 2016

Actin-Based Feedback Circuits In Cell Migration And Endocytosis, Xinxin Wang

Arts & Sciences Electronic Theses and Dissertations

In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin …


Investigation Of Cellular Microenvironments And Heterogeneity With Biodynamic Imaging, Daniel Alexander Merrill Aug 2016

Investigation Of Cellular Microenvironments And Heterogeneity With Biodynamic Imaging, Daniel Alexander Merrill

Open Access Dissertations

Imaging of biological tissue in a relevant environment is critical to accurately assessing the effectiveness of chemotherapeutic agents in combatting cancer. Though many three-dimensional (3D) culture models exist, conventional in vitro assays continue to use two-dimensional (2D) cultures because of the difficulty in imaging through deep tissue. 3D tomographic imaging techniques exist and are being used in the development of 3D efficacy assays. However, most of these assays look at therapy endpoint (dead or living cancer cell count) and do not capture the dynamics of tissue response.

Biodynamic imaging (BDI) is a 3D tomographic imaging and assay technique that uses …


Inquiry Of Lipid Membranes Interacting With Functional Peptides And Polyphenol Drug Molecules, Chian Sing Ho Jun 2016

Inquiry Of Lipid Membranes Interacting With Functional Peptides And Polyphenol Drug Molecules, Chian Sing Ho

USF Tampa Graduate Theses and Dissertations

Cellular membranes are important targets for many membrane-active peptides and drug compounds. Here we are interested in deciphering how lipid membranes are perturbed by several membrane-active molecules, including the transmembrane domain of the influenza M2 protein (M2TM), aggregates formed by a synthetic polyglutamine peptide, and three polyphenol compounds (i.e., tamoxifen, genistein, and verapamil). We employ phase-separated ternary lipid model membranes in the form of giant unilamellar vesicles (GUVs) to simulate raft-like structures that have been proposed to govern many important processes in plasma membranes (e.g., intracellular singling and trafficking). Specifically, we use fluorescent microscopy to interrogate how those membrane additives …


Analysis Of Gompertzian Growth In Aggregating Multicellular Tumor Nodules, Gwendolyn A. Deger May 2016

Analysis Of Gompertzian Growth In Aggregating Multicellular Tumor Nodules, Gwendolyn A. Deger

Graduate Masters Theses

Past studies have shown that tumor growth generally follows an exponential growth function or, with a limiting growth constraint, the sigmoid Gompertzian function, where a terminal tumor size is reached at late times. The classical Gompertzian description of tumor growth applies in the case of two-dimensional (2D) in vitro cell studies due to the effect of physical limitations on possible growth area. This project asked whether Gompertzian form applies to the in vitro growth of multifocal 3D tumor nodules, whose size is determined by aggregation events as well as cell proliferation. Previous reports have indicated that these three-dimensional (3D) spheroids …


Biophysical Studies Of Cell Division Protein Localization Mechanisms In Escherichia Coli, Matthew Wayne Bailey May 2016

Biophysical Studies Of Cell Division Protein Localization Mechanisms In Escherichia Coli, Matthew Wayne Bailey

Doctoral Dissertations

How nanometer-scale proteins position accurately within micron-scale bacteria has intrigued both biologists and physicists alike. A critical process requiring precise protein localization is cell division. In most bacteria, cell division starts with the self-assembly of the FtsZ proteins into filaments that form a ring-like structure encircling the cell at its middle, the Z-ring. The Z-ring is a scaffold for additional proteins that synthesize the lateral cell wall which separates the two daughter cells. If division planes are misplaced relative to bacterial chromosomes, also called nucleoids, daughter cells with incomplete genetic material can be produced. In Escherichia coli, research carried out …


Biophysical Investigation Of Amyloid Formation And Their Prion-Like Self-Replication, Mentor Mulaj Mar 2016

Biophysical Investigation Of Amyloid Formation And Their Prion-Like Self-Replication, Mentor Mulaj

USF Tampa Graduate Theses and Dissertations

Growth and deposition of amyloid fibrils, polymers of proteins with a cross beta-sheet structure, are associated with a significant number of human pathologies including Alzheimer’s disease, Parkinson’s disease, prion diseases, type II diabetes, and senile systematic or dialysis-related amyloidoses. The broader objective of my research is to identify the basic mechanisms regulating nucleation and growth of amyloid fibrils. There is increasing evidence that amyloid formation may proceed along at least two distinct assembly pathways for the formation of rigid fibrils. One pathway involves the nucleated polymerization of the characteristic rigid fibrils from partially denatured monomers and the other proceeds via …


Two-Photon Excitation Based Photochemistry And Neural Imaging, Kevin Andrew Hatch Jan 2016

Two-Photon Excitation Based Photochemistry And Neural Imaging, Kevin Andrew Hatch

Open Access Theses & Dissertations

Two-photon microscopy is a fluorescence imaging technique which provides distinct advantages in three-dimensional cellular and molecular imaging. The benefits of this technology may extend beyond imaging capabilities through exploitation of the quantum processes responsible for fluorescent events. This study utilized a two-photon microscope to investigate a synthetic photoreactive collagen peptidomimetic, which may serve as a potential material for tissue engineering using the techniques of two-photon photolysis and two-photon polymerization. The combination of these techniques could potentially be used to produce a scaffold for the vascularization of engineered three-dimensional tissues in vitro to address the current limitations of tissue engineering. Additionally, …


Bayesian Signal Detection And Source Separation In Simulated Brain Computer Interface Systems, Muhammad Asim Mubeen Jan 2016

Bayesian Signal Detection And Source Separation In Simulated Brain Computer Interface Systems, Muhammad Asim Mubeen

Legacy Theses & Dissertations (2009 - 2024)

The problems of signal detection and source separation are important in many fields of science and engineering. In many cases, a target signal needs to be detected in real time and is contaminated by noise. Sometimes the level of noise is on the order of the signal itself. The real time detection of a target signal is of key importance in problems such as the brain computer interface systems. In brain computer interface systems, the neural activity (electric signals) of the brain is detected using sensors (electrodes) on the surface of the brain or the scalp. This signal is contaminated …