Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

The Generality Of The Guga Mrci Approach In Columbus For Treating Complex Quantum Chemistry, Hans Lischka, Ron Shepard, Thomas Müller, Peter G. Szalay, Russell M. Pitzer, Adelia J. A. Aquino, Carol A. Parish, Et Al. Apr 2020

The Generality Of The Guga Mrci Approach In Columbus For Treating Complex Quantum Chemistry, Hans Lischka, Ron Shepard, Thomas Müller, Peter G. Szalay, Russell M. Pitzer, Adelia J. A. Aquino, Carol A. Parish, Et Al.

Chemistry Faculty Publications

The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calcu- lations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of dia- batization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully vari- ational …


Binding Of Solvated Peptide (Eplqlkm) With A Graphene Sheet Via Simulated Coarse-Grained Approach, Somayyeh Sheikholeslami, R. B. Pandey, Nadiya Dragneva, Wely Floriano, Oleg Rubel, Stephen A. Barr, Zhifeng Kuang, Rajiv Berry, Rajesh Naik, Barry Farmer May 2014

Binding Of Solvated Peptide (Eplqlkm) With A Graphene Sheet Via Simulated Coarse-Grained Approach, Somayyeh Sheikholeslami, R. B. Pandey, Nadiya Dragneva, Wely Floriano, Oleg Rubel, Stephen A. Barr, Zhifeng Kuang, Rajiv Berry, Rajesh Naik, Barry Farmer

Faculty Publications

Binding of a solvated peptide A1 (1E 2P 3L 4Q 5L 6K 7M) with a graphene sheet is studied by a coarse-grained computer simulation involving input from three independent simulated interaction potentials in hierarchy. A number of local and global physical quantities such as energy, mobility, and binding profiles and radius of gyration of peptides are examined as a function of temperature (T). Quantitative differences (e.g., the extent of binding within a temperature range) and qualitative similarities are observed in results from three simulated potentials. Differences in variations of both local and …


Constructing Diabatic States From Adiabatic States: Extending Generalized Mulliken–Hush To Multiple Charge Centers With Boys Localization, Joseph E. Subotnik, Robert J. Cave, Sina Yeganeh, Mark A. Ratner Dec 2008

Constructing Diabatic States From Adiabatic States: Extending Generalized Mulliken–Hush To Multiple Charge Centers With Boys Localization, Joseph E. Subotnik, Robert J. Cave, Sina Yeganeh, Mark A. Ratner

All HMC Faculty Publications and Research

This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken–Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization …


Semiclassical Application Of The Mo/Ller Operators In Reactive Scattering, Sophya V. Garashchuk, J. C. Light Jan 2001

Semiclassical Application Of The Mo/Ller Operators In Reactive Scattering, Sophya V. Garashchuk, J. C. Light

Faculty Publications

Mo/ller operators in the formulation of reaction probabilities in terms of wave packet correlation functions allow us to define the wave packets in the interaction region rather than in the asymptotic region of the potential surface. We combine Mo/ller operators with the semiclassical propagator of Herman and Kluk. This does not involve further approximations and can be used with any initial value representation (IVR) semiclassical propagator. Time propagation in asymptotic regions of the potential due to Mo/ller operators reduces the oscillations of the propagator integrand and improves convergence of the results with respect to the number of trajectories. The effectiveness …


Simplified Calculation Of The Stability Matrix For Semiclassical Propagation, Sophya V. Garashchuk, J. C. Light Jan 2000

Simplified Calculation Of The Stability Matrix For Semiclassical Propagation, Sophya V. Garashchuk, J. C. Light

Faculty Publications

We present a simple method of calculation of the stability (monodromy) matrix that enters the widely used semiclassical propagator of Herman and Kluk and almost all other semiclassical propagators. The method is based on the unitarity of classical propagation and does not involve any approximations. The number of auxiliary differential equations per trajectory scales linearly rather than quadratically with the system size. Just the first derivatives of the potential surface are needed. The method is illustrated on the collinear H3 system.