Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics

Publications

Series

Missense mutations

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Computational And Experimental Approaches To Reveal The Effects Of Single Nucleotide Polymorphisms With Respect To Disease Diagnostics, Tugba G. Kucukkal, Ye Yang, Susan C. Chapman, Weiguo Cao, Emil Alexov May 2014

Computational And Experimental Approaches To Reveal The Effects Of Single Nucleotide Polymorphisms With Respect To Disease Diagnostics, Tugba G. Kucukkal, Ye Yang, Susan C. Chapman, Weiguo Cao, Emil Alexov

Publications

DNA mutations are the cause of many human diseases and they are the reason for natural differences among individuals by affecting the structure, function, interactions, and other properties of DNA and expressed proteins. The ability to predict whether a given mutation is disease-causing or harmless is of great importance for the early detection of patients with a high risk of developing a particular disease and would pave the way for personalized medicine and diagnostics. Here we review existing methods and techniques to study and predict the effects of DNA mutations from three different perspectives: in silico, in vitro and …


A Missense Mutation In Clic2 Associated With Intellectual Disability Is Predicted By In Silico Modeling To Affect Protein Stability And Dynamics, Shawn Witham, Kyoko Takano, Charles Schwartz, Emil Alexov Aug 2011

A Missense Mutation In Clic2 Associated With Intellectual Disability Is Predicted By In Silico Modeling To Affect Protein Stability And Dynamics, Shawn Witham, Kyoko Takano, Charles Schwartz, Emil Alexov

Publications

Large-scale next generation resequencing of X chromosome genes identified a missense mutation in the CLIC2 gene on Xq28 in a male with X-linked intellectual disability (XLID) and not found in healthy individuals. At the same time, numerous nsSNPs (nonsynonomous SNP) have been reported in the CLIC2 gene in healthy individuals indicating that the CLIC2 protein can tolerate amino acid substitutions and be fully functional. To test the possibility that p.H101Q is a disease-causing mutation, we performed in silico simulations to calculate the effects of the p.H101Q mutation on CLIC2 stability, dynamics, and ionization states while comparing the effects obtained for …