Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel May 2023

Modeling Accuracy Matters: Aligning Molecular Dynamics With 2d Nmr Derived Noe Restraints, Milan Patel

Honors Scholar Theses

Among structural biology techniques, Nuclear Magnetic Resonance (NMR) provides a holistic view of structure that is close to protein structure in situ. Namely, NMR imaging allows for the solution state of the protein to be observed, derived from Nuclear Overhauser Effect restraints (NOEs). NOEs are a distance range in which hydrogen pairs are observed to stay within range of, and therefore experimental data which computational models can be compared against. To that end, we investigated the effects of adding the NOE restraints as distance restraints in Molecular Dynamics (MD) simulations on the 24 residue HP24stab derived villin headpiece subdomain to …


Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre May 2019

Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre

Honors Scholar Theses

Abnormal ocular motility is a common manifestation of many underlying pathologies particularly those that are neurological. Dynamics of saccades, when the eye rapidly changes its point of fixation, have been characterized for many neurological disorders including concussions, traumatic brain injuries (TBI), and Parkinson’s disease. However, widespread saccade analysis for diagnostic and research purposes requires the recognition of certain eye movement parameters. Key information such as velocity and duration must be determined from data based on a wide set of patients’ characteristics that may range in eye shapes and iris, hair and skin pigmentation [36]. Previous work on saccade analysis has …


Biophysical Characterization Of Optimized Self-Assembling Protein Nanoparticles As A Malaria Vaccine, Sophia Walker May 2013

Biophysical Characterization Of Optimized Self-Assembling Protein Nanoparticles As A Malaria Vaccine, Sophia Walker

Honors Scholar Theses

Malaria is an infectious disease that affects several million individuals worldwide and is a significant international public health issue. While there is currently a malaria vaccine in phase III clinical trials, recent results demonstrate that it is only about 35% effective in reducing the incidence of the disease. The use of self-assembling protein nanoparticles (SAPNs) that display epitopes of the repeat sequence of the circumsporozoite protein of Plasmodium falciparum, the parasite that causes malaria, has been shown to elicit a strong immune response. This prototype has potential for further improvement by altering the epitope regions of the nanoparticles to …


Use Of Second Harmonic Generation (Shg) Imaging For 3-Dimensional Ultrastructural Visualization Of Muscle Repair Mechanisms, Matthew Dufner May 2012

Use Of Second Harmonic Generation (Shg) Imaging For 3-Dimensional Ultrastructural Visualization Of Muscle Repair Mechanisms, Matthew Dufner

Honors Scholar Theses

In this study, we have combined SHG imaging with various fluorescent dyes which are designed to stain nuclei and used a skeletal muscle injury and regeneration model to establish the ability of this approach to reliably and reproducibly evaluate the above nuclear parameters. By using the cobra cardiotoxin (CTX-1), which creates acute well defined injuries within the muscle, on the tibialis anterior (TA) and gastrocnemius hind limb muscles of mice, predictable and reproducible regenerative patterns (in response to acute injury) can be observed by harvesting muscle samples at specific time points during recovery. Through SHG imaging, we endeavor to document …