Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Determination Of Nanoparticle Localisation Within Subcellular Organelles In Vitro Using Raman Spectroscopy, Esen Efeoglu, Mark Keating, Jennifer Mcintyre, Alan Casey, Hugh Byrne Nov 2015

Determination Of Nanoparticle Localisation Within Subcellular Organelles In Vitro Using Raman Spectroscopy, Esen Efeoglu, Mark Keating, Jennifer Mcintyre, Alan Casey, Hugh Byrne

Articles

Ease of sample preparation, narrow spectral bandwidth and minimal influence from water are features of Raman spectroscopy which make it a powerful, label-free way to study a wide range of biological structures and phenomena. In this context, given the concerns over their toxicology arising from their increased production and use, evaluation of nanoparticle uptake and localisation in biological systems and determination of the mechanisms of subcellular interaction and trafficking can provide long-term solutions for nanotoxicology, and potential strategies for nanomedicine. In this study, Raman spectroscopy is explored to monitor the sequential trafficking of nanoparticles through subcellular organelles in-vitro and to …


Investigating The Role Of Shape On The Biological Impact Of Gold Nanoparticles In Vitro, Furong Tian, Hugh Byrne, Joao Conde, Tobias Stoeger, Martin Clift,, Alan Casey, Pablo Del Pino, Beatriz Pelaz, Barbara Rothen-Rutishauser,, Giovani Estrada, Jesús De La Fuente Nov 2015

Investigating The Role Of Shape On The Biological Impact Of Gold Nanoparticles In Vitro, Furong Tian, Hugh Byrne, Joao Conde, Tobias Stoeger, Martin Clift,, Alan Casey, Pablo Del Pino, Beatriz Pelaz, Barbara Rothen-Rutishauser,, Giovani Estrada, Jesús De La Fuente

Articles

Aim: To investigate the influence of gold nanoparticle (GNP) geometry on the biochemical response of Calu-3 epithelial cells.

Materials and Methods: Spherical, triangular and hexagonal GNPs were used. The GNP-cell interaction was assessed via atomic absorption spectroscopy (AAS) and transmission electron microscopy (TEM). The biochemical impact of GNPs was determined over 72hrs at [0.0001-1mg/mL].

Results: At 1mg/mL, hexagonal GNPs reduced Calu-3 viability below 60%, showed increased reactive oxygen species production and higher expression of pro-apoptotic markers. A cell mass burden of 1:2:12 as well as number of GNPs per cell (2:1:3) was observed for spherical:triangular:hexagonal GNPs.

Conclusion:

These findings do …


Vibrational Spectroscopic Studies To Elucidate The Structure Of Water At Biological Interfaces, Bahar Bahrani, Luke O'Neill, Hugh Byrne Oct 2015

Vibrational Spectroscopic Studies To Elucidate The Structure Of Water At Biological Interfaces, Bahar Bahrani, Luke O'Neill, Hugh Byrne

Articles

In biological systems, water takes up to 80% of the volume inside a cell. This water solubilizes the biological macromolecules such as the DNA, proteins and lipids. Recent advancements have shown that the water at the interface of a lipid membrane is structured, as five layers of structured water have been found at this solvent cage. Steady state Raman spectroscopy of water in lipids was performed in an attempt to elucidate the structure of water at the biological interface. Deuterium oxide (heavy water) was employed to hydrate lipid biomolecules. The heavier deuterium atom shifts the molecular vibrations and renders them …


Spectropathology For The Next Generation: Quo Vadis?, Hugh Byrne, Malgorzata Baranska, Gerwin J. Pupples, Nick Stone, Bayden Wood, Kathleen M. Gough, Peter Lasch, Phil Heraud, Josep Sulé-Suso, Ganesh Sockalingum Apr 2015

Spectropathology For The Next Generation: Quo Vadis?, Hugh Byrne, Malgorzata Baranska, Gerwin J. Pupples, Nick Stone, Bayden Wood, Kathleen M. Gough, Peter Lasch, Phil Heraud, Josep Sulé-Suso, Ganesh Sockalingum

Articles

Although the potential of vibrational spectroscopy for biomedical applications has been well demonstrated, translation into clinical practice has been relatively slow. This Editorial assesses the challenges facing the field and the potential way forward. While many technological challenges have been addressed to date, considerable effort is still required to gain acceptance of the techniques among the medical community, standardise protocols, extend to a clinically relevant scale, and ultimately assess the health economics underlying clinical deployment. National and international research networks can contribute much to technology development and standardisation. Ultimately, large-scale funding is required to engage in clinical trials and instrument …


Vibrational Microspectroscopy For Cancer Screening, Fiona Lyng, Ines Ramos, Ola Ibrahim, Hugh Byrne Mar 2015

Vibrational Microspectroscopy For Cancer Screening, Fiona Lyng, Ines Ramos, Ola Ibrahim, Hugh Byrne

Articles

Vibrational spectroscopy analyses vibrations within a molecule and can be used to characterise a molecular structure. Raman spectroscopy is one of the vibrational spectroscopic techniques, in which incident radiation is used to induce vibrations in the molecules of a sample, and the scattered radiation may be used to characterise the sample in a rapid and non-destructive manner. Infrared (IR) spectroscopy is a complementary vibrational spectroscopic technique based on the absorption of IR radiation by the sample. Molecules absorb specific frequencies of the incident light which are characteristic of their structure. IR and Raman spectroscopy are sensitive to subtle biochemical changes …


Multivariate Statistical Methodologies Applied In Biomedical Raman Spectroscopy: Assessing The Validity Of Partial Least Squares Regression Using Simulated Model Datasets, Mark E. Keating, Haq Nawaz, Franck Bonnier, Hugh Byrne Mar 2015

Multivariate Statistical Methodologies Applied In Biomedical Raman Spectroscopy: Assessing The Validity Of Partial Least Squares Regression Using Simulated Model Datasets, Mark E. Keating, Haq Nawaz, Franck Bonnier, Hugh Byrne

Articles

Raman spectroscopy is fast becoming a valuable analytical tool in a number of biomedical scenarios, most notably disease diagnostics. Importantly, the technique has also shown increasing promise in the assessment of drug interactions on a cellular and subcellular level, particularly when coupled with multivariate statistical analysis. However, an important consideration, both with Raman spectroscopy and the associated statistical methodologies, is the accuracy of these techniques and more specifically the sensitivities which can be achieved and ultimately the limits of detection of the various methods. The purpose of this study is thus the construction of a model simulated data set with …