Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Quantitative Analysis Of Single-Molecule Force Spectroscopy On Folded Chromatin Fibers, He Meng, Kurt Andresen, John Van Noort Apr 2015

Quantitative Analysis Of Single-Molecule Force Spectroscopy On Folded Chromatin Fibers, He Meng, Kurt Andresen, John Van Noort

Physics and Astronomy Faculty Publications

Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison …


Temperature Dependent C-Axis Hole Mobilities In Rubrene Single Crystals Determined By Time-Of-Flight, Russell L. Lidberg, Tom J. Pundsack, Neale O. Haugen, Lucas R. Johnstone, C. Daniel Frisbie Mar 2015

Temperature Dependent C-Axis Hole Mobilities In Rubrene Single Crystals Determined By Time-Of-Flight, Russell L. Lidberg, Tom J. Pundsack, Neale O. Haugen, Lucas R. Johnstone, C. Daniel Frisbie

Physics and Astronomy Faculty Publications

Hole mobilities (μ) in rubrene single crystals (space group Cmca) along the crystallographic c-axis have been investigated as a function of temperature and applied electric field by the time-of-fight method. Measurements demonstrate an inverse power law dependence on temperature, namely,μ=μ0T−n with n = 1.8, from room temperature down to 180 K. At 296 K, the average value of μ was found to be 0.29 cm2/Vs increasing to an average value of 0.70 cm2/Vs at 180 K. Below 180 K a decrease in mobility is observed with further cooling. Overall, these results confirm the …