Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Sucralose Destabilization Of Protein Structure, Lee Chen, Nimesh Shukla, Inha Cho, Erin F. Cohn, Erika A. Taylor, Christina M. Othon Mar 2015

Sucralose Destabilization Of Protein Structure, Lee Chen, Nimesh Shukla, Inha Cho, Erin F. Cohn, Erika A. Taylor, Christina M. Othon

Erika A. Taylor, Ph.D.

Sucralose is a commonly employed artificial sweetener that behaves very differently than its natural disaccharide counterpart, sucrose, in terms of its interaction with biomolecules. The presence of sucralose in solution is found to destabilize the native structure of two model protein systems: the globular protein bovine serum albumin and an enzyme staphylococcal nuclease. The melting temperature of these proteins decreases as a linear function of sucralose concentration. We correlate this destabilization to the increased polarity of the molecule. The strongly polar nature is manifested as a large dielectric friction exerted on the excited-state rotational diffusion of tryptophan using time-resolved fluorescence …


Escherichia Coli Heptosyltransferase I: Investigation Of Protein Dynamics Of A Gt-B Structural Enzyme, Erika A. Taylor, Daniel J. Czyzyk, Shreya S. Sawant, Carlos A. Ramirez-Mondragon Aug 2013

Escherichia Coli Heptosyltransferase I: Investigation Of Protein Dynamics Of A Gt-B Structural Enzyme, Erika A. Taylor, Daniel J. Czyzyk, Shreya S. Sawant, Carlos A. Ramirez-Mondragon

Erika A. Taylor, Ph.D.

Heptosyltransferase I (HepI), the enzyme responsible for the transfer of l-glycero-d-manno-heptose to a 3-deoxy-α-d-manno-oct-2-ulopyranosonic acid (Kdo) of the growing core region of lipopolysaccharide, is a member of the GT-B structural class of enzymes. Crystal structures have revealed open and closed conformations of apo and ligand-bound GT-B enzymes, implying that large-scale protein conformational dynamics play a role in their reaction mechanism. Here we report transient kinetic analysis of conformational changes in HepI reported by intrinsic tryptophan fluorescence and present the first real-time evidence of a GT-B enzyme undergoing a substrate binding-induced transition from an open to closed state prior to catalysis.