Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Examining Artifacts Of The Watershed Segmentation, Emily Jo Armitage Jan 2020

Examining Artifacts Of The Watershed Segmentation, Emily Jo Armitage

Electronic Theses and Dissertations

The watershed segmentation is an algorithm used to systematically track cell intercalary behaviors during germ band extension of the Drosophila embryo. Neighboring cells share a contracting vertical interface, called a T1, which continues contracting to a single point, a T2, and extending in the horizontal direction to create what is called a T3 interface (Fig. 1). Additionally, higher order vertices called rosettes occur when five or more cells meet at a common vertex. Simulated T2 events demonstrate that cell angle and not noise level in the image contributes to the incorrect detection of artifactual T1s in more acute angled cells …


Modulation Of The Navigational Strategy Of Insects In Controlled Temperature Environments, Joseph Shomar, Anggie Ferrer, Josh Forer, Tom Zhang, Mason Klein Jan 2018

Modulation Of The Navigational Strategy Of Insects In Controlled Temperature Environments, Joseph Shomar, Anggie Ferrer, Josh Forer, Tom Zhang, Mason Klein

2018 Entries

With its small size and limited motor tool set, the Drosophila larva is a good system to study how animals alter specific elements of their behavior to search and reach optimal environmental conditions. We aim to understand the larva’s response to temperature across development, in sensory gradients, and to distinguish behavioral modulations based on physical changes from those due to sensory input. PID-controlled instruments drive temporal or spatial temperature gradients; combined with a moat system to replenish gels at high temperature, we can explore the larva’s full behavioral profile. Many larvae are simultaneously observed during free navigation in three different …


Imaging Live Drosophila Brain With Two-Photon Fluorescence Microscopy, Syeed Ehsan Ahmed Jan 2017

Imaging Live Drosophila Brain With Two-Photon Fluorescence Microscopy, Syeed Ehsan Ahmed

Open Access Theses & Dissertations

Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance …


Two-Photon Excitation Based Photochemistry And Neural Imaging, Kevin Andrew Hatch Jan 2016

Two-Photon Excitation Based Photochemistry And Neural Imaging, Kevin Andrew Hatch

Open Access Theses & Dissertations

Two-photon microscopy is a fluorescence imaging technique which provides distinct advantages in three-dimensional cellular and molecular imaging. The benefits of this technology may extend beyond imaging capabilities through exploitation of the quantum processes responsible for fluorescent events. This study utilized a two-photon microscope to investigate a synthetic photoreactive collagen peptidomimetic, which may serve as a potential material for tissue engineering using the techniques of two-photon photolysis and two-photon polymerization. The combination of these techniques could potentially be used to produce a scaffold for the vascularization of engineered three-dimensional tissues in vitro to address the current limitations of tissue engineering. Additionally, …