Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Cavity Ringdown Spectroscopy In Nitrogen/Oxygen Mixtures In The Presence Of Alpha Radiation, Sidney John Gautrau Dec 2016

Cavity Ringdown Spectroscopy In Nitrogen/Oxygen Mixtures In The Presence Of Alpha Radiation, Sidney John Gautrau

Master's Theses

This research was part of an effort to experimentally validate computational models under development for radiation-induced atmospheric effects. Cavity Ringdown Spectroscopy (CRDS) was used to measure the concentration of chemical products generated as a result of radiation interactions in a controlled atmosphere. Experiments were conducted in a vacuum chamber interfaced with a gas introduction system that controlled the initial atmospheric composition. A quadrupole mass spectrometer and tunable dye laser were integrated to confirm initial atmospheric composition, and provide wavelength flexibility for detecting a variety of chemical products generated by radiation interactions. CRDS measurements were made for ozone production resulting from …


Shielded Radiography With A Laser-Driven Mev-Energy X-Ray Source, Shouyuan Chen, Grigory V. Golovin, Cameron Miller, Daniel Haden, Sudeep Banerjee, Ping Zhang, Cheng Liu, Jun Zhang, Baozhen Zhao, Shaun Clarke, Sara Pozzi, Donald Umstadter Jan 2016

Shielded Radiography With A Laser-Driven Mev-Energy X-Ray Source, Shouyuan Chen, Grigory V. Golovin, Cameron Miller, Daniel Haden, Sudeep Banerjee, Ping Zhang, Cheng Liu, Jun Zhang, Baozhen Zhao, Shaun Clarke, Sara Pozzi, Donald Umstadter

Donald Umstadter Publications

We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeVenergy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed Xray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 107 photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target …