Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

Theses and Dissertations

Quantum wells

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physics

Optical Characterization And Modeling Of Compositionally Matched Indium Arsenide-Antimonide Bulk And Multiple Quantum Well Semiconductors, Scott C. Phillips Mar 2004

Optical Characterization And Modeling Of Compositionally Matched Indium Arsenide-Antimonide Bulk And Multiple Quantum Well Semiconductors, Scott C. Phillips

Theses and Dissertations

Indium arsenide-antimonide (InAsSb) semiconductors have been determined to emit in the 3-5 micrometer range, the window of interest for countermeasures against infrared electro-optical threats. This experiment set out to cross the bulk to quantum well characterization barrier by optically characterizing two sets of compositionally matched type I quantum well and bulk well material samples. Absorption measurements determined the band gap energy of the bulk samples and the first allowed subband transition for the quantum wells. By collecting absorption spectra at different temperatures, the trend of the energy transitions was described by fitting a Varshni equation to them. The expected result …


Optical Physics Of Microcavity Surface Emitting Lasers, Michael J. Noble Mar 1998

Optical Physics Of Microcavity Surface Emitting Lasers, Michael J. Noble

Theses and Dissertations

This dissertation consists of an in-depth theoretical analysis of the optical impact of transverse index confinement on the lasing modes of microcavity surface emitting lasers. Two different variational techniques were employed to calculate the relevant optical laser parameters: (1) modal resonance, field profile, (2) confinement factor, and (3) threshold gain. Through a semianalytic field analysis, two new confinement related effects were discovered: (1) a polarization dependent change in mirror reflectance with aperture radius, and (2) a mode dependent blueshift. Through a numerical field analysis, the physical mechanisms governing diffraction were ascertained. These are: (1) the transverse confinement of the optical …


Time Resolved Photoluminescence Spectra Of A Mid-Infrared Multiple Quantum Well Semiconductor Laser, Anthony L. Franz Dec 1997

Time Resolved Photoluminescence Spectra Of A Mid-Infrared Multiple Quantum Well Semiconductor Laser, Anthony L. Franz

Theses and Dissertations

Recombination mechanisms in mid-IR semiconductor lasers are strongly dependent on the carrier density of the active region. The objective of this research is to improve previous carrier density estimates through the incorporation of spectral information. One hundred photoluminescence (PL) spectra were calculated for a variety of carrier densities. Calculations were made for an InAsSb/InAlAsSb multiple quantum well laser sample assuming parabolic bands. The widths of the calculated spectral profiles were tabulated as a function of carrier density. Actual spectra were measured using the Ultrafast Mid-Infrared Photoluminescence System, which uses upconversion to measure the PL intensity in time steps smaller than …


Theoretical Modeling Of Linear Absorption Coefficients In Si/Si1-Xgex Multiple Quantum Well Photodetectors, Kevin D. Greene Dec 1996

Theoretical Modeling Of Linear Absorption Coefficients In Si/Si1-Xgex Multiple Quantum Well Photodetectors, Kevin D. Greene

Theses and Dissertations

Si/Si1-xGex MQW Infrared Photodetectors offer the promise of normal incidence photodetection tunable over the range of 3-12 micrometers wavelength range at temperatures above 40 K. This system is attractive because the Si1-xGex offers greater compatibility with existing Si based signal processing circuitry. Band structures, momentum matrix elements and linear absorption coefficients are computed using a Luftinger-Kohn k/p analysis for Si/Si1-xGex quantum wells grown in the 110 direction. The absorption coefficient as a function of energy and wavelength is calculated by two methods: a delta function fit to intersubband transitions, and a …