Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

University of Nebraska - Lincoln

Donald Umstadter Publications

2015

Articles 1 - 2 of 2

Full-Text Articles in Physics

Compact Source Of Narrowband And Tunable X-Rays For Radiography, Sudeep Banerjee, Shouyuan Chen, Nathan D. Powers, Daniel Haden, Cheng Liu, Grigory V. Golovin, Jun Zhang, Baozhen Zhao, S. Clarke, Sara Pozzi, Jack Silano, H. Karwowski, Donald Umstadter Jan 2015

Compact Source Of Narrowband And Tunable X-Rays For Radiography, Sudeep Banerjee, Shouyuan Chen, Nathan D. Powers, Daniel Haden, Cheng Liu, Grigory V. Golovin, Jun Zhang, Baozhen Zhao, S. Clarke, Sara Pozzi, Jack Silano, H. Karwowski, Donald Umstadter

Donald Umstadter Publications

We discuss the development of a compact X-ray source based on inverse-Compton scattering with a laser-driven electron beam. This source produces a beam of high-energy X-rays in a narrow cone angle (5–10 mrad), at a rate of 108 photons-s_1. Tunable operation of the source over a large energy range, with energy spread of ~50%, has also been demonstrated. Photon energies >10 MeV have been obtained. The narrowband nature of the source is advantageous for radiography with low dose, low noise, and minimal shielding.


All-Laser-Driven Thomson X-Ray Sources, Donald Umstadter Jan 2015

All-Laser-Driven Thomson X-Ray Sources, Donald Umstadter

Donald Umstadter Publications

We discuss the development of a new generation of accelerator-based hard X-ray sources driven exclusively by laser light. High-intensity laser pulses serve the dual roles: first, accelerating electrons by laser-driven plasma wakefields, and second, generating X-rays by inverse Compton scattering. Such all-laser-driven X-rays have recently been demonstrated to be energetic, tunable, relatively narrow in bandwidth, short pulsed and well collimated. Such characteristics, especially from a compact source, are highly advantageous for numerous advanced X-ray applications—in metrology, biomedicine, materials, ultrafast phenomena, radiology and fundamental physics.